Hostname: page-component-6bf8c574d5-xtvcr Total loading time: 0 Render date: 2025-02-21T02:00:47.439Z Has data issue: false hasContentIssue false

Epidemiology of Human Metapneumovirus in a Pediatric Long-Term Care Facility

Published online by Cambridge University Press:  02 January 2015

Natalie Neu*
Affiliation:
Department of Pediatrics, Columbia University, New York, New York Elizabeth Seton Pediatric Center, New York, New York
Theresa Plaskett
Affiliation:
Elizabeth Seton Pediatric Center, New York, New York
Gordon Hutcheon
Affiliation:
Elizabeth Seton Pediatric Center, New York, New York Department of Pediatrics, New York Medical College, Valhalla, New York
Meghan Murray
Affiliation:
Department of Pediatrics, Columbia University, New York, New York
Karen L. Southwick
Affiliation:
New York State Department of Health, New Rochelle, New York
Lisa Saiman
Affiliation:
Department of Pediatrics, Columbia University, New York, New York Department of Infection Control and Prevention, NewYork-Presbyterian Hospital, New York, New York
*
630 West 168th Street, PH4–468, New York, NY 10032 (nn45@columbia.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background.

Viral respiratory pathogens cause outbreaks in pediatric long-term care facilities (LTCFs), but few studies have used viral diagnostic testing to identify the causative pathogens. We describe the use of such testing during a prolonged period of respiratory illness and elucidate the epidemiology of human metapneumovirus (hMPV) at our LTCF.

Design.

Retrospective study of influenza-like illness (ILI).

Setting.

A 136-bed pediatric LTCF from January 1 through April 30, 2010.

Methods.

The ILI case definition included fever, cough, change in oropharyngeal secretions, increase in oxygen requirement, and/or wheezing.

Results.

During the study period, 69 episodes of ILI occurred in 61 (41%) of 150 residents. A viral pathogen was detected in 27 (39%) of the episodes, including respiratory syncytial virus (RSV) (n = 3), influenza A virus (not typed; n = 2), parainfluenza virus (n = 2), adenovirus (n = 1), and hMPV (n = 19). Twenty-seven of the residents with ILI (44%) required transfer to acute care hospitals (mean length of hospitalization, 12 days; range, 3–47 days). Residents with tracheostomies were more likely to have ILI (adjusted odds ratio [OR], 3.99 [95% confidence interval {CI}, 1.87–8.53]; P = .0004). The mortality rate for residents with ILI was 1.6%. Residents with hMPV were younger (P = .03), more likely to be transferred to an acute care facility (OR, 3.73 [95% CI, 1.17–11.95]; P = .02), and less likely to have a tracheostomy (adjusted OR, 0.19 [95% CI, 0.047–0.757]; P = .02).

Discussion.

Diverse pathogens, most notably hMPV, caused ILI in our pediatric LTCF during a prolonged period of time. Viral testing was helpful in characterizing the epidemiology of ILI in this population.

Type
Original Article
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2012 

References

1. van den Hoogen, BG, de Jong, JC, Groen, J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 2001;7:719724.Google Scholar
2. Williams, JV, Harris, PA, Tollefson, SJ, et al. Human metapneumovirus and lowet respiratory tract disease in otherwise healthy infants and children. N Engl J Med 2004;350:443450.Google Scholar
3. Montejano-Elias, L, Alpuche-Solis, AG, Zarate-Chavez, V, Sanchez-Alvarado, J, Hernandez-Salinas, AE, Noyola, DE. Human metapneumovirus and other respiratory viral infections in children attending a day care center. Pediatr Infect Dis J 2009;28: 10241026.Google Scholar
4. Heikkinen, T, Osterback, R, Peltola, V, Jartti, T, Vainionpaa, R. Human metapneumovirus infections in children. Emerg Infect Dis 2008;14:101106.Google Scholar
5. Dollner, H, Risnes, K, Radtke, A, Nordbo, SA. Outbreak of human metapneumovirus infection in Norwegian children. Pediatr Infect Dis J 2004;23:436440.Google Scholar
6. Wolf, DG, Zakay-Rones, Z, Fadeela, A, Greenberg, D, Dagan, R. High seroprevalence of human metapneumovirus among young children in Israel. J Infect Dis 2003;188:18651867.Google Scholar
7. Caracciolo, S, Minini, C, Colombrita, D, et al. Human metapneumovirus infection in young children hospitalized with acute respiratory tract disease: virologie and clinical features. Pediatr Infect Dis 1 2008;27:406412.Google Scholar
8. Cilla, G, Onate, E, Perez-Yarza, EG, Montes, M, Vicente, D, Perez-Trallero, E. Hospitalization rates for human metapneumovirus infection among 0- to 3-year-olds in Gipuzkoa (Basque Country), Spain. Epidemiol Infect 2009;137:6672.Google Scholar
9. Kim, S, Sung, H, Im, HJ, Hong, SJ, Kim, MN. Molecular epidemiological investigation of a nosocomial outbreak of human metapneumovirus infection in a pediatric hemato-oncology patient population. J Clin Microbiol 2009;47:12211224.Google Scholar
10. Boivin, G, De Serres, G, Hamelin, ME, et al. An outbreak of severe respiratory tract infection due to human metapneumovirus in a long-term care facility. Clin Infect Dis 2007;44:11521158.Google Scholar
11. Louie, JK, Schnurr, DP, Pan, CY, et al. A summer outbreak of human metapneumovirus infection in a long-term-care facility. J Infect Dis 2007;196:705708.Google Scholar
12. Ghanaiem, H, Averbuch, D, Kopiewitz, BZ, et al. An outbreak of adenovirus type 7 in a residential facility for severely disabled children. Pediatr Infect Dis J 2011;30(11):948952.Google Scholar
13. Kopel, E, Amitai, Z, Grotto, I, Avramovich, E, Kaliner, E, Volovik, I. Recurrent outbreak of pandemic (H1N1) 2009 virus infection in a pediatric long-term care facility and the adjacent school. Clin Infect Dis 2010;51:481482.Google Scholar
14. Ginocchio, CC, Zhang, F, Manji, R, et al. Evaluation of multiple test methods for the detection of the novel 2009 influenza A (H1N1) during the New York City outbreak. J Clin Virol 2009; 45:191195.Google Scholar
15. Miroballi, Y, Baird, JS, Zackai, S, et al. Novel influenza A(H1N1) in a pediatric health care facility in New York City during the first wave of the 2009 pandemic. Arch Pediatr Adolesc Med 2010; 164:2430.Google Scholar
16. Centers for Disease Control and Prevention. Influenza: Reports and Surveillance Methods in the United States, http://www.cdc.gov/flu/weekly/fluactivity.htm. Accessed January 2010.Google Scholar
17. McPherson, M, Arango, P, Fox, H, et al. A new definition of children with special health care needs. Pediatrics 1998;102: 137140.Google Scholar
18. Honda, H, Iwahashi, J, Kashiwagi, T, et al. Outbreak of human metapneumovirus infection in elderly inpatients in Japan. J Am Geriatr Soc 2006;54:177180.Google Scholar
19. Chano, F, Rousseau, C, Laferriere, C, Couillard, M, Charest, H. Epidemiological survey of human metapneumovirus infection in a large pediatric tertiary care center. J Clin Microbiol 2005; 43:55205525.Google Scholar
20. Wolf, DG, Greenberg, D, Kalkstein, D, et al. Comparison of human metapneumovirus, respiratory syncytial virus and influenza A virus lower respiratory tract infections in hospitalized young children. Pediatr Infect Dis J 2006;25:320324.Google Scholar
21. Harris, JA. Infection control in pediatric extended care facilities. Infect Control Hosp Epidemiol 2006;27:598603.Google Scholar