Article contents
Air dispersal of severe acute respiratory coronavirus virus 2 (SARS-CoV-2): Implications for hospital infection control during the fifth wave of coronavirus disease 2019 (COVID-19) due to the SARS-CoV-2 omicron variant in Hong Kong
Published online by Cambridge University Press: 24 October 2022
Abstract
We obtained 24 air samples in 8 general wards temporarily converted into negative-pressure wards admitting coronavirus disease 2019 (COVID-19) patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant BA.2.2 in Hong Kong. SARS-CoV-2 RNA was detected in 19 (79.2%) of 24 samples despite enhanced indoor air dilution. It is difficult to prevent airborne transmission of SARS-CoV-2 in hospitals.
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America
References
Shrestha, LB, Foster, C, Rawlinson, W, Tedla, N, Bull, RA. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission. Rev Med Virol 2022;32:e2381.CrossRefGoogle ScholarPubMed
Cheng, VC, Ip, JD, Chu, AW, et al. Rapid spread of SARS-CoV-2 omicron subvariant BA.2 in a single-source community outbreak. Clin Infect Dis 2022;75:e44–e49.CrossRefGoogle Scholar
Baker, MA, Rhee, C, Tucker, R, et al. Rapid control of hospital-based SARS-CoV-2 Omicron clusters through daily testing and universal use of N95 respirators. Clin Infect Dis 2022;75:e296–e299.CrossRefGoogle ScholarPubMed
Klompas, M, Rhee, C, Baker, MA. Universal use of N95 respirators in Healthcare settings when community coronavirus disease 2019 rates are high. Clin Infect Dis 2022;74:529–531.CrossRefGoogle ScholarPubMed
Cheng, VC, Wong, SC, Chan, VW, et al. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect Control Hosp Epidemiol 2020;41:1258–1265.CrossRefGoogle ScholarPubMed
Wong, SC, Yuen, LL, Chan, VW, et al. Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): what is the implication of hospital infection control? Infect Control Hosp Epidemiol 2021. doi: 10.1017/ice.2021.318.CrossRefGoogle Scholar
Wong, SC, Leung, M, Tong, DW, et al. Infection control challenges in setting up community isolation and treatment facilities for patients with coronavirus disease 2019 (COVID-19): implementation of directly observed environmental disinfection. Infect Control Hosp Epidemiol 2021;42:1037–1045.CrossRefGoogle ScholarPubMed
Wong, SC, Chan, VW, AuYeung, CH, et al. Air dispersal of respiratory viruses other than severe acute respiratory coronavirus virus 2 (SARS-CoV-2) and the implication on hospital infection control. Infect Control Hosp Epidemiol 2022. doi: 10.1017/ice.2022.186.CrossRefGoogle Scholar
Shenal, BV, Radonovich, LJ Jr, Cheng, J, Hodgson, M, Bender, BS. Discomfort and exertion associated with prolonged wear of respiratory protection in a healthcare setting. J Occup Environ Hyg 2012;9:59–64.CrossRefGoogle Scholar
Wong, SC, Lam, GK, AuYeung, CH, et al. Absence of nosocomial influenza and respiratory syncytial virus infection in the coronavirus disease 2019 (COVID-19) era: implication of universal masking in hospitals. Infect Control Hosp Epidemiol 2021;42:218–221.CrossRefGoogle ScholarPubMed
- 4
- Cited by