Published online by Cambridge University Press: 28 July 2020
Let A be the product of an abelian variety and a torus over a number field K, and let
$$m \ge 2$$
be a square-free integer. If
$\alpha \in A(K)$
is a point of infinite order, we consider the set of primes
$\mathfrak p$
of K such that the reduction
$(\alpha \bmod \mathfrak p)$
is well defined and has order coprime to m. This set admits a natural density, which we are able to express as a finite sum of products of
$\ell$
-adic integrals, where
$\ell$
varies in the set of prime divisors of m. We deduce that the density is a rational number, whose denominator is bounded (up to powers of m) in a very strong sense. This extends the results of the paper Reductions of points on algebraic groups by Davide Lombardo and the second author, where the case m prime is established.