Article contents
LEFT ℓ1-FACTORABLE POLYNOMIALS
Published online by Cambridge University Press: 01 September 2009
Abstract
A polynomial P ∈ (kE, F) is left ℓ1-factorable if there are a polynomial Q ∈
(kE, ℓ1) and an operator L ∈
(ℓ1, F) such that P = L ○ Q. We characterise the Radon–Nikodým property by the left ℓ1-factorisation of polynomials on L1(μ). We study the left ℓ1-factorisation of nuclear, compact and Pietsch integral polynomials. For Pietsch integral polynomials, we introduce the left integral ℓ1-factorisation property, obtaining a second polynomial characterisation of the Radon–Nikodým property and showing that it plays a role somehow comparable, in this setting, to nuclearity of operators. A characterisation of
1-spaces is also given in terms of the left compact ℓ1-factorisation of polynomials.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2009
References
REFERENCES
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20160115092636867-0056:S001708950999005X_char1.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20160115092636867-0056:S001708950999005X_char3.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20160115092636867-0056:S001708950999005X_char3.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20160115092636867-0056:S001708950999005X_char3.gif?pub-status=live)
- 3
- Cited by