Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-11T20:51:05.414Z Has data issue: false hasContentIssue false

Hausdorff dimension of the set of almost convergent sequences

Published online by Cambridge University Press:  06 January 2022

Alexandr Usachev*
Affiliation:
School of Mathematics and Statistics, Central South University, Hunan, 410085, China and Faculty of Mathematics, Voronezh State University, Universitetskaya pl. 1, Voronezh, 394006, Russia. E-mail: alex.usachev.ru@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

The paper deals with the sets of numbers from [0,1] such that their binary representation is almost convergent. The aim of the study is to compute the Hausdorff dimensions of such sets. Previously, the results of this type were proved for a single summation method (e.g. Cesàro, Abel, Toeplitz). This study extends the results to a wide range of matrix summation methods.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

1. Introduction

Every number $t\in [0,1]$ admits its binary representation, that is the sequence $x(t)\;=\;(x_1(t), x_2(t),$ $ x_3(t), \!\dots)\in \{0,1\}^{\mathbb N}$ , where

(1.1) \begin{equation}t=\sum_{k\;=\;1}^\infty x_k(t) 2^{-k}\;=\;0.x_1(t)x_2(t)x_3(t)\dots_2,\end{equation}

the subscript 2 indicates the binary representation. If t has two expansions, we choose that ending with ones.

There is the classical result of E. Borel that for almost all $t\in [0,1]$ the corresponding sequences in $\{0,1\}^{\mathbb N}$ are Cesàro convergent to $1/2$ , that is the Lebesgue measure of the set

\begin{equation*}\left\{ t\in [0,1] \;:\; \lim_{n\to\infty}\frac{1}{n}\sum_{k\;=\;1}^n x_k(t)\;=\;\frac{1}{2}\right\}\!,\end{equation*}

is 1. Besicovitch [Reference Besicovitch2] considered the arbitrary level sets

(1.2) \begin{equation}F^\alpha\;=\;\left\{ t\in [0,1] \;:\; \lim_{n\to\infty}\frac{1}{n}\sum_{k\;=\;1}^n x_k(t)\;=\;\alpha\right\}, \ 0\le \alpha \le 1,\end{equation}

and proved that the Hausdorff dimension of the set $F^\alpha$ is $-\alpha \log_2 \alpha\;-\;(1-\alpha) \log_2 (1-\alpha)$ (with the convention that $0\log_2 0$ is 0). This result was generalised by Eggleston [Reference Eggleston7] to m-adic expansions. The paper [Reference Albeverio, Pratsiovytyi and Torbin1] studies in details the complement of the set $\cup_{\alpha\in[0,1]}F^\alpha$ .

Another far reaching extension of the Besicovitch result was done in [Reference Cardone, Corbo Esposito and Faella4]. They proved, in particular, that the result holds if one replaces the Cesàro summation in (1.2) by the Abel summation or that with respect to a general Toeplitz matrix. More recently, the paper [Reference Chen, Wang and Wen5] computes the Hausdorff dimension of the level sets associated with moving averages from ergodic theory.

In this study, we are concerned with an analogue of these results for almost convergence. The concept of almost convergent sequences was introduced in 1948 by Lorentz [Reference Lorentz9].

Definition 1.1. A bounded sequence x is said to be almost convergent to $s\in {\mathbb R},$ if and only if

\begin{equation*} \lim\limits_{n\to\infty} \frac1n \sum\limits_{k\;=\;j}^{j\;+\;n\;-\;1} x_k\;=\;s,\end{equation*}

uniformly in $j\in{\mathbb N}$ . In this case, we write $x \in ac_s$ .

The set of all almost convergent sequences is denoted by ac. As a method of summation, the almost convergence is not a matrix one [Reference Lorentz9, Section 7] and is fairly weak [Reference Lorentz9, Theorem 7]. For further studies of almost convergence and its applications, we refer to [Reference Semenov and Sukochev10Reference Sukochev, Usachev and Zanin14].

In view of the above, the following result is quite expected. Connor [Reference Connor6] showed that for almost none $t\in [0,1]$ the corresponding sequences in $\{0,1\}^{\mathbb N}$ are almost convergent, that is the Lebesgue measure of the set

\begin{equation*}\left\{ t\in [0,1] \;:\; x(t) \in ac\right\},\end{equation*}

is zero.

This raises a natural question on the Hausdorff dimension of the set

\begin{equation*}G^\alpha\;:\!=\;\left\{ t\in [0,1] \;:\; x(t) \in ac_\alpha\right\}, \ 0\le \alpha \le 1.\end{equation*}

In this study, we compute the Hausdorff dimension of sets $G^\alpha$ for rational $\alpha$ and the corresponding Hausdorff measure of the set $G^{1/2}.$ This allows us to extend the Besicovitch result to any strongly regular matrix method of summation, which is weaker than (and consistent with) the Cesàro summability.

2. Preliminaries

In this section, we recall the notion of the Hausdorff dimension and the summation method.

2.1 Hausdorff dimension

For a non-empty subset $F\subset \mathbb R^n$ and $s\ge 0$ , we define the s-dimensional Hausdorff measure of F as follows [Reference Falconer8, Section 2.1]:

\begin{equation*}\mathcal H^s(F) \;:\!=\; \lim_{\delta\to0} \inf \left\{\sum_{i=1}^\infty \left({\rm diam} \ U_i \right)^s \;:\; F\subset \bigcup_{i\;=\;1}^\infty U_i, \ 0\le {\rm diam} \ U_i \le \delta \right\}.\end{equation*}

The Hausdorff dimension of the set $F\subset \mathbb R^n$ is defined as follows [Reference Falconer8, Section 2.2]:

\begin{equation*}{\rm dim}_H F \;:\!=\; \inf\{ s\ge 0 \;:\; \mathcal H^s(F)\;=\;0\}.\end{equation*}

2.2 Methods of summation

Any matrix $A\;=\;\{a_{nk}\}_{n,k\;=\;1}^\infty$ generates a (matrix) method of summation given by the natural mapping

\begin{equation*}x\mapsto \left\{\sum_{k\;=\;1}^\infty a_{nk}x_k\right\}_{n\;=\;1}^\infty,\end{equation*}

on the space of all sequences $x\;=\;\{x_k\}_{k\;=\;1}^\infty$ . Whereas this definition is sufficient for our purposes, we refer to [Reference Boos3, Definition 1.2.12] for a general definition of the summation method.

Definition 2.1. A (matrix) method of summation $A\;=\;\{a_{nk}\}_{n,k\;=\;1}^\infty$ is said to be

  1. regular if for every x such that $x_n\to c$ as $n\to\infty$ , one has

    \begin{equation*}\sum_{k\;=\;1}^\infty a_{nk}x_k\to c \ \textrm{as} \ n\to\infty.\end{equation*}
  2. strongly regular if

    \begin{equation*}\sum_{k\;=\;1}^\infty |a_{nk}-a_{n,k\;+\;1}|\to 0 \ \textrm{as} \ n\to\infty.\end{equation*}

Definition 2.2. Let $A\;=\;\{a_{nk}\}_{n,k\;=\;1}^\infty$ and $B\;=\;\{b_{nk}\}_{n,k\;=\;1}^\infty$ be two (matrix) methods of summation.

  1. 1. $A\;=\;\{a_{nk}\}_{n,k\;=\;1}^\infty$ is said to be weaker than $B\;=\;\{b_{nk}\}_{n,k\;=\;1}^\infty$ if the existence of the limit

    \begin{equation*}\lim_{n\to\infty}\sum_{k\;=\;1}^\infty a_{nk}x_k,\end{equation*}
    implies the existence of the limit
    \begin{equation*}\lim_{n\to\infty}\sum_{k\;=\;1}^\infty b_{nk}x_k,\end{equation*}
    for every x;
  2. 2. $A\;=\;\{a_{nk}\}_{n,k\;=\;1}^\infty$ is said to be consistent with $B\;=\;\{b_{nk}\}_{n,k\;=\;1}^\infty$ if the existence of both limits

    \begin{equation*}\lim_{n\to\infty}\sum_{k\;=\;1}^\infty a_{nk}x_k \ \text{and } \ \lim_{n\to\infty}\sum_{k\;=\;1}^\infty b_{nk}x_k,\end{equation*}
    implies that their values are the same for every x.

3. Main result

For every $m, p, q\in{\mathbb N}$ such that $0\le p \le q$ consider sets

\begin{equation*}A_{m,p,q} \;:\!=\; \left\{ t\in [0,1] \;:\; \sum_{i\;=\;qnm+1}^{qnm+qm}x_i(t)\;=\;p\cdot m \ \text{for every} \ n\in {\mathbb N}\right\}.\end{equation*}

In words, the sets $A_{m,p,q}$ consist of all $t\in [0,1]$ such that in their binary representation every block of the form $[qnm+1, qnm+qm]$ contains exactly pm ones.

For every fixed $p, q\in{\mathbb N}$ such that $0\le p \le q$ the inclusion $A_{m,p,q} \subset G^{p/q}$ holds for every $m\in {\mathbb N}$ . Indeed, for every large enough $n\in {\mathbb N}$ , there exists $i \in {\mathbb N}$ such that $qmi < n \le qm(i+1)$ . Then, regardless of $j\in {\mathbb N}$ , for every $t\in A_{m,p,q}$ we have

\begin{equation*}pm (i-1) <\sum\limits_{k\;=\;j}^{j\;+\;n\;-\;1} x_k(t) \le pm (i\;+\;2).\end{equation*}

Dividing by n and taking the limit as $n\to\infty$ (or, equivalently, as $i\to\infty$ ), we obtain

\begin{equation*} \lim\limits_{n\to\infty} \frac1n \sum\limits_{k\;=\;j}^{j\;+\;n\;-\;1} x_k(t)\;=\;\frac{p}{q},\end{equation*}

uniformly in $j\in{\mathbb N}$ . Thus, $x(t) \in ac_\alpha$ with $\alpha\;=\;p/q$ .

Lemma 3.1. For every $m, p, q\in{\mathbb N}$ such that $0\le p \le q$ the Hausdorff dimension of the set $A_{m,p,q}$ is

\begin{equation*}{\rm dim}_H (A_{m,p,q})=\frac{\log_2 C_{qm}^{pm}}{qm},\end{equation*}

where $C_n^k$ are binomial coefficients.

Proof. Let $w_j$ , $j=1,\dots, C_{qm}^{pm}$ be all words (on the alphabet $\{0,1\}$ ) of length qm, which contain exactly pm ones. For every $j=1,\dots, C_{qm}^{pm}$ consider intervals $I_j=[a_j,b_j]\subset [0,1]$ , where $a_j=0.w_j00\dots_2$ , $b_j=0.w_j11\dots_2$ . Here, the subscript 2 means the binary representation as in the formula (1.1).

For every $j=1,\dots, C_{qm}^{pm}$ define functions $f_j \;:\; [0,1] \to I_j$ as follows:

\begin{equation*}f_j(t)\;=\;a_j\;+\;(b_j\;-\;a_j)t.\end{equation*}

Using representation (1.1) for $b_j-a_j$ and t and the Cauchy product formula, we obtain that

\begin{equation*}(b_j\;-\;a_j)t\;=\;0.\underbrace{0...0}_{qm}x_1(t)x_2(t)x_3(t)\dots_2.\end{equation*}

Thus, $f_j(t)=0.w_j x_1(t)x_2(t)x_3(t)\dots_2$ and so,

\begin{equation*}A_{m,p,q}\;=\;\bigcup_{j\;=\;1}^{C_{qm}^{pm}} f_j(A_{m,p,q}).\end{equation*}

This tells us that the set $A_{m,p,q}$ is an attractor of the iterated function system $\{f_1,\dots, f_{C_{qm}^{pm}}\}$ .

The length of all intervals $I_j$ is

\begin{equation*}|I_j|\;=\;0.w_j11\dots_2-0.w_j00\dots_2\;=\;0.\underbrace{0...0}_{qm}11\dots_2\;=\;0.\underbrace{0...0}_{qm-1}100\dots_2\;=\;2^{-qm}.\end{equation*}

Since all $f_j$ ’s are linear functions from [0,Reference Albeverio, Pratsiovytyi and Torbin1] to $I_j$ , it follows that all $f_j$ are similarities with ratios $r_j=2^{-qm}$ for all $j=1,\dots, C_{qm}^{pm}$ .

By construction the intervals $I_j$ and $I_k$ intersect if and only if $w_j=\beta01$ and $w_k\;=\;\beta10$ for some word $\beta$ . Indeed, we have then $a_k\;=\;0.\beta100\dots_2$ and $b_j=0.\beta011\dots_2$ . So, the point $0.\beta100\dots_2$ belongs to both intervals. Thus, the open intervals $(a_j,b_j)$ , $j=1,\dots, C_{qm}^{pm}$ are pairwise disjoint. Therefore, the sets $f_j(0,1)$ , $j=1,\dots, C_{qm}^{pm}$ are pairwise disjoint and

\begin{equation*}\bigcup_{j\;=\;1}^{C_{qm}^{pm}} f_j(0,1) \subset (0,1).\end{equation*}

This means, that the iterated function system $\{f_1,\dots, f_{C_{qm}^{pm}}\}$ satisfies the open set condition (see e.g. [Reference Falconer8, p. 129]).

By [Reference Falconer8, Theorem 9.3] the Hausdorff dimension d of the set $A_{m,p,q}$ is a solution of the following equation:

\begin{equation*}\sum_{j\;=\;1}^{C_{qm}^{pm}} r_j^d\;=\;1.\end{equation*}

Since all $r_j=2^{-qm}$ , it follows that

\begin{equation*}d\;=\;\frac{\log_2 C_{qm}^{pm}}{qm},\end{equation*}

as required.

Theorem 3.2. Let $\alpha\;=\;p/q$ with $p, q\in{\mathbb N}$ such that $0\le p \le q$ . The Hausdorff dimension of the set $G^\alpha$ is

\begin{equation*}-\alpha \log_2 \alpha\;-\;(1-\alpha) \log_2 (1-\alpha).\end{equation*}

Proof. Since $A_{m,p,q} \subset G^\alpha$ for every $m\in {\mathbb N}$ , it follows that

\begin{equation*}{\rm dim}_H (G^\alpha)\ge \lim_{m\to\infty}{\rm dim}_H (A_{m,p,q})\;=\;\lim_{m\to\infty} \frac{\log_2 C_{qm}^{pm}}{qm}.\end{equation*}

Using the Stirling formula, we obtain

\begin{align*}{\rm dim}_H (G^\alpha)&\ge \lim_{m\to\infty} \frac{1}{qm}\log_2\frac{\sqrt{2\pi qm} \left(\frac{qm}{e}\right)^{qm}}{\sqrt{2\pi pm} \left(\frac{pm}{e}\right)^{pm}\cdot \sqrt{2\pi (q-p)m} \left(\frac{(q-p)m}{e}\right)^{(q-p)m}}\\&=\lim_{m\to\infty} \frac{1}{qm}\log_2\left[\sqrt{\frac{1}{2\pi m}\frac{q}{p(q-p)}}\cdot \left(\frac{q}{q-p} \right)^{qm}\cdot \left(\frac{q-p}{p} \right)^{pm}\right]\\&=\log_2\frac{q}{q-p}\;+\;\frac{p}{q}\log_2\frac{q-p}{p}\\&=\log_2\frac{1}{1-\alpha}\;+\;\alpha\log_2\frac{1-\alpha}{\alpha}\\&=-\alpha \log_2 \alpha\;-\;(1-\alpha) \log_2 (1-\alpha).\end{align*}

To prove the upper bound, we note that it follows directly from the definition that every almost convergent sequence is Cesàro convergent. Thus, $G^\alpha \subset F^\alpha$ for every $0\le \alpha \le 1$ and

\begin{equation*}{\rm dim}_H (G^\alpha)\le {\rm dim}_H (F^\alpha)\;=\;-\alpha \log_2 \alpha\;-\;(1-\alpha) \log_2 (1-\alpha),\end{equation*}

by the aforementioned Besicovitch result. These two estimates prove the assertion.

Remark 3.3. Theorem 3.2 is proved for rational $\alpha$ only. For irrational $\alpha$ one can try to proceed in a similar way:

  1. (1) fix an approximation of $\alpha$ by rationals $\left\{p_i/q_i\right\}_{i\;=\;1}^\infty$ ;

  2. (2) consider a sequence $r_i=\sum\nolimits_{k\;=\;1}^i q_k$ , $i=1,2,\dots$ ;

  3. (3) for every $m\in \mathbb N$ introduce sets $A_{m,\alpha, \textbf{p},\textbf{q}}$ to consist of all $t\in [0,1]$ such that in their binary representation every block of the form $[r_im+1, r_im+q_im]$ contains exactly $p_im$ ones for every $i\in \mathbb N$ .

Consider the sequence

\begin{equation*}x\;=\;\sum_{i\;=\;1}^\infty \chi_{[r_im\;+\;1, r_im\;+\;p_im]},\end{equation*}

where $\chi$ stands for the characteristic function of a set. It is easy to see that $x\in A_{m,\alpha, \textbf{p},\textbf{q}}$ . One the other hand, since $\alpha$ is irrational, it follows that both sequences $\{p_i\}$ and $\{q_i-p_i\}$ tend to infinity. Thus, the sequence x is not almost convergent. Hence, the inclusion $A_{m,\alpha, \textbf{p},\textbf{q}} \subset G^\alpha$ fails.

Corollary 3.4. The Hausdorff dimension of the set $G^{1/2}$ is 1 and the 1-dimensional Hausdorff measure of the set $G^{1/2}$ is zero.

Proof. Since ${\rm dim}_H (G^{1/2})=1$ , it follows that 1-dimensional Hausdorff measure of the set $G^{1/2}$ equal to its Lebesgue measure and equal to zero by [Reference Connor6].

The following two results compute the dimension of the level sets for a wide class of summation methods.

Corollary 3.5. Let $A\;=\;\{a_{nk}\}_{n,k\;=\;1}^\infty$ be a strongly regular summation method, which is weaker than (and consistent with) the Cesàro method, and let $0\le \alpha\le 1$ be a rational number. The Hausdorff dimension of the set

\begin{equation*}\left\{ t\in [0,1] \;:\; \lim_{n\to\infty}\sum_{k\;=\;1}^\infty a_{nk}x_k(t)\;=\;\alpha\right\},\end{equation*}

is

\begin{equation*}-\alpha \log_2 \alpha\;-\;(1-\alpha) \log_2 (1-\alpha).\end{equation*}

Proof. In [Reference Lorentz9, Theorem 7] G. G. Lorentz showed that every strongly regular summation method sums every almost convergent sequence (to the same value). On the other hand, since A is weaker than the Cesàro method, every A-summable sequence is Cesàro summable. Therefore,

(3.1) \begin{equation}G^\alpha \subseteq\left\{ t\in [0,1] \;:\; \lim_{n\to\infty}\frac{1}{n}\sum_{k\;=\;1}^n a_{nk}x_k(t)\;=\;\alpha\right\}\subseteq F^\alpha.\end{equation}

The assertion follows from Theorem 3.2 and the above-mentioned Besicovitch result.

Corollary 3.6. Let $A\;=\;\{a_{nk}\}_{n,k\;=\;1}^\infty$ be a strongly regular summation method. The Hausdorff dimension of the set

\begin{equation*}\left\{ t\in [0,1] \;:\; \lim_{n\to\infty}\sum_{k\;=\;1}^\infty a_{nk}x_k(t)\;=\;\frac12\right\},\end{equation*}

is $1.$

Proof. The assertion follows from the first inclusion in (3.1) and Corollary 3.4.

To demonstrate that Corollaries 3.5 and 3.6, in fact, hold for a broad range of summation methods, we verify the assertions for families of the general Cesàro and Riesz summation methods.

Example 3.7. For $\beta>0$ consider the Cesàro method of summation $C^\beta\;=\;\{c^{(\beta)}_{nk}\}_{n,k\;=\;1}^\infty$ , where

\begin{equation*}c^{(\beta)}_{nk}\;=\;\frac{\binom{ n-k\;+\;\beta -1}{ n-k}}{ \binom{n\;+\;\beta }{ n}}, \ \text{for} \ k\le n,\end{equation*}

and zero otherwise.

For every $\beta>0$ , the method of summation $C^\beta$ satisfies Corollary 3.6 by [Reference Lorentz9, p. 179]. For every $0<\beta\le 1$ , the method of summation $C^\beta$ satisfies Corollary 3.5 by [Reference Boos3, Theorem 3.1.10].

Example 3.8. For a fixed sequence $\{p_n\}_{n\;=\;1}^\infty$ of real numbers such that $p_0>0$ and $p_n\ge0$ set $P_n\;=\;\sum\nolimits_{k\;=\;1}^n p_k\Phi$ and consider the Riesz method of summation $R_p=\{r_{nk}\}_{n,k\;=\;1}^\infty$ , where

\begin{equation*}r_{nk}\;=\;\frac{p_k}{ P_n}, \ \text{for} \ k\le n,\end{equation*}

and zero otherwise.

For every sequence p such that

  • $\frac{p_n}{P_n} \to 0,$ as $n\to\infty$ ,

  • $\frac{1}{P_n} \sum\nolimits_{k\;=\;1}^n |p_k-p_{k+1}|\to 0,$ as $n\to\infty$ ,

the method of summation $R_p$ satisfies Corollary 3.6 by [Reference Boos3, Exercise 3.2.23] (these two bullets are exactly the strong regularity condition). For every sequence p satisfying two bullets above and such that p is monotonically increasing, the method of summation $R_p$ satisfies Corollary 3.5 by [Reference Boos3, Exercise 3.2.24].

Acknowledgements

The author thanks anonymous reviewer for a number of comments which improved the exposition. The work of the author was supported by Russian Science Foundation (grant 19-11-00197).

References

Albeverio, S., Pratsiovytyi, M. and Torbin, G., Topological and fractal properties of real numbers which are not normal, Bull. Sci. Math. 129 (2005), 615630.CrossRefGoogle Scholar
Besicovitch, A. S., On the sum of digits of real numbers represented in the dyadic system, Math. Ann. 110 (1935), 321330.CrossRefGoogle Scholar
Boos, J., Classical and modern methods in summability, Oxford Mathematical Monographs (Oxford University Press, Oxford, 2000).Google Scholar
Cardone, G., Corbo Esposito, A. and Faella, L., Hausdorff dimension for level sets of upper and lower limits of generalized averages of binary digits, Math. Methods Appl. Sci. 29 (2006), 19832008.CrossRefGoogle Scholar
Chen, H., Wang, X. and Wen, Z., Multifractal analysis on the level sets described by moving averages, Int. J. Number Theory 11 (2015), 21752189.CrossRefGoogle Scholar
Connor, J., Almost none of the sequences of 0’s and 1’s are almost convergent, Internat. J. Math. Math. Sci. 13 (1990), 775777.Google Scholar
Eggleston, H. G., The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser. 20 (1949), 3136.CrossRefGoogle Scholar
Falconer, K., Fractal geometry, 2nd edition (John Wiley & Sons, Inc., Hoboken, NJ, 2003). Mathematical foundations and applications.CrossRefGoogle Scholar
Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167190.CrossRefGoogle Scholar
Semenov, E. and Sukochev, F., Extreme points of the set of Banach limits, Positivity 17 (2013), 163170.Google Scholar
Semenov, E., Sukochev, F. and Usachev, A., Geometry of Banach limits and their applications, Russian Math. Surveys 75(4) (2020), 725763.CrossRefGoogle Scholar
Sofi, M. A., Banach limits: Some new thoughts and perspectives, J. Anal. 29 (2021), 591606 CrossRefGoogle Scholar
Sukochev, F., Usachev, A. and Zanin, D., Dixmier traces generated by exponentiation invariant generalised limits, J. Noncommut. Geom. 8(2) (2014), 321336.CrossRefGoogle Scholar
Sukochev, F., Usachev, A. and Zanin, D., Generalized limits with additional invariance properties and their applications to noncommutative geometry, Adv. Math. 239 (2013), 164–189.CrossRefGoogle Scholar