Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-02-11T15:51:20.976Z Has data issue: false hasContentIssue false

The diet of Leptomeryx sp. from the Late Eocene Yolomécatl Formation, NW Oaxaca, Sierra Madre del Sur Morphotectonic Province, SE México and its palaeoecological significance

Published online by Cambridge University Press:  11 September 2017

ISMAEL FERRUSQUÍA-VILLAFRANCA*
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Sin Número, Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México
VÍCTOR ADRIÁN PÉREZ-CRESPO
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Sin Número, Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México
JOSÉ E. RUIZ-GONZÁLEZ
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Sin Número, Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México
ENRIQUE MARTÍNEZ-HERNÁNDEZ
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Sin Número, Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México
PEDRO MORALES-PUENTE
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Sin Número, Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México Laboratorio Nacional de Geoquímica y Mineralogía-LANGEM, Ciudad de México, CP 04510, México
*
Author for correspondence: ismaelfv@unam.mx
Rights & Permissions [Opens in a new window]

Abstract

The diet and habitat of Leptomeryx sp. from the Late Uintan Yolomécatl Formation of NW Oaxaca, SE Mexico were inferred using dental enamel carbon and oxygen isotopic relationships, and compared with those of congeneric species from temperate North America. Results show that Leptomeryx sp. fed on C3 plants and lived in open forest or forest/savanna ecotone. The palynoflora and co-occurrence of perissodactyls and artiodactyls that live in an environment like that of Leptomeryx support this interpretation. Further, both records disclose that in NW Oaxaca (southern North America) tropical conditions prevailed at that time, unlike that of temperate North America.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2017 

1. Introduction

1.a. Previous work and purpose

The Tertiary vertebrate record of México is scattered across the country. Spanning the Eocene–Pliocene interval (i.e. Early Wasatchian – Early Blancan North American Land Mammal Ages or NALMAs), it includes among others remains of marsupials, creodonts, perissodactyls, probocideans, carnivores, rodents and lagomorphs (Montellano-Ballesteros & Jiménez-Hidalgo, Reference Montellano-Ballesteros, Jiménez-Hidalgo, Vega, Nyborg, Perilliat, Montellano-Ballesteros, Cevallos-Ferriz and Quiroz-Barroso2006). In particular, the Eocene localities and faunas of Lomas las Tetas de Cabra (Wasatchian, Baja California; Novacek et al. Reference Novacek, Ferrusquía-Villafranca, Flynn, Wyss and Norell1991), Marfil (Bridgerian–Uintan, Guanajuato; Fries, Hibbard & Dunkle, Reference Fries, Hibbard and Dunkle1955; Black & Stephens, Reference Black and Stephens1973; Ferrusquía-Villafranca, Reference Ferrusquía-Villafranca, Black and Dawson1989), Rancho Gaitan (Chadronian, Chihuahua; Ferrusquía-Villafranca, Reference Ferrusquía-Villafranca1969; Ferrusquía-Villafranca, Galindo-Hernández & Barrios-Rivera, Reference Ferrusquía-Villafranca, Galindo-Hernández, Barrios-Rivera, Arroyo-Cabrales and Polaco1997; Ferrusquía-Villafranca et al. Reference Ferrusquía-Villafranca, Jiménez-Hidalgo, Ortiz-Mendieta, Bravo-Cuevas, Montellano-Ballesteros and Arroyo-Cabrales2002) and Yolomécatl (Uintan, Oaxaca; Jiménez-Hidalgo et al. Reference Jiménez-Hidalgo, Smith, Guerrero-Arenas and Alvarado-Ortega2015; Ferrusquía-Villafranca et al. Reference Ferrusquía-Villafranca, Ruíz-González, Torres-Hernández, Anderson, Urrutia-Fucugauchi, Martínez-Hernández and García-Villegas2016) stand out for their biodiversity. It should be noted that the latter is the southernmost Eocene fauna of North America, and includes mammal species belonging to at least five Orders: Carnivora, Rodentia, Condylarthra, Artiodactyla and Perissodactyla (Jiménez-Hidalgo et al. Reference Jiménez-Hidalgo, Smith, Guerrero-Arenas and Alvarado-Ortega2015; Ferrusquía-Villafranca, unpublished data). Among the Artiodactyla species found, Leptomeryx sp. (Leptomerycidae) was previously known from the Chadronian Rancho Gaitan local fauna (Ferrusquía-Villafranca, Reference Ferrusquía-Villafranca1969; Ferrusquía-Villafranca, Galindo-Hernández & Barrios-Rivera, Reference Ferrusquía-Villafranca, Galindo-Hernández, Barrios-Rivera, Arroyo-Cabrales and Polaco1997). This taxon is a small (rabbit-sized), primitive, hornless brachydont/mesodont ruminant, that lived during Middle–Late Eocene (Late Uintan) to Early Miocene time (Early Hemingfordian) (Damuth, Reference Damuth, Damuth and MacFadden1990; Webb, Reference Webb, Janis, Scott and Jacobs1998). Palaeoecologically, Leptomeryx is considered to be a forest-dwelling mammal that thrived on tree leaves and fruits (Clark, Beerbower & Kietze, Reference Clark, Beerbower and Kietze1967; Retallack, Reference Retallack1983; Wall & Collins, Reference Wall and Collins1998).

The Leptomeryx sp. of this study was found in Yolomécatl, Oaxaca, some 1480 km south of its known former location in Mexico (Rancho Gaitan, near Ojinaga, Chihuahua), at c. 12° latitude, crossing the Tropic of Cancer. We decided to use the carbon and oxygen isotopic relationships recorded in the tooth enamel of an Oaxacan specimen referred to this taxon in order to infer its diet and habitat, compare them with those inferred from Leptomeryx species from temperate North America, and decide whether or not the latitudinal difference influenced the diet and habitat of Leptomeryx in southern (tropical) North America.

1.b. Study area

The study area includes c. 90 km2 of rugged terrain within the Mixteca Region, NW Oaxaca State, Sierra Madre del Sur Morphotectonic Province, SE Mexico, between latitudes 17° 25′ and 17° 36′ N and longitudes 97° 29′ and 97° 36′ W (Fig. 1). The Cenozoic sequence unconformably overlies carbonate rock units of Late Jurassic – Late Cretaceous age. The area also includes the Mixteco/Oaxaca Terrane boundary, namely the Tamazulapam fault (Nieto-Samaniego et al. Reference Nieto-Samaniego, Alaniz-Alvarez, Silva-Romo, Equiza-Castro and Mendoza-Rosales2006; Morán-Zenteno, Cerca & Keppie, Reference Morán-Zenteno, Cerca and Keppie2007).

Figure 1. Location and geology of the study area.

The Tertiary sequence (Ferrusquía-Villafranca et al. Reference Ferrusquía-Villafranca, Ruíz-González, Torres-Hernández, Anderson, Urrutia-Fucugauchi, Martínez-Hernández and García-Villegas2016) consists of five lithostratigraphic units: two volcanic and one shallow intrusive of Eocene–Oligocene age, as well as two epiclastic and subordinately pyroclastic units of Eocene – early Late Oligocene age. Finally, Quaternary deposits and soils unconformably overlie the preceding units (Fig. 1). The structural record chiefly includes folds in the Mesozoic units and faults in the Tertiary units. Palaeontologically, the most interesting unit is the Yolomécatl Formation, an c. 650 m thick, vertebrate-bearing, red clastic lacustrine/fluvial succession that fills the namesake triangular graben, which is genetically related to the Tamazulapam fault dynamics. Felsic tuff sheets interbed this succession; one yielded an 39Ar–40Ar age of 40.7 Ma (Ferrusquía-Villafranca et al. Reference Ferrusquía-Villafranca, Ruíz-González, Torres-Hernández, Anderson, Urrutia-Fucugauchi, Martínez-Hernández and García-Villegas2016), which dates this unit and its fauna as of late Middle Eocene age (i.e. Late Uintan NALMA).

1.c. Stable isotopes

Three main approaches are used for inferring the diet and habitat for Pleistocene and earlier extinct mammals: biological actualism, morphofunctional analyses and biochemical carbon/oxygen markers (Andrews & Hixson, Reference Andrews and Hixson2014). Carbon is incorporated into plants through photosynthesis in three pathways: C3, C4 and CAM (O'Leary, Reference O'Leary1988).

The C3 photosynthetic pathway occurs in trees and shrubs and some temperate grasses, with carbon isotopic values ranging between –34 ‰ and –22 ‰ (van der Merwe & Medina, Reference van der Merwe and Medina1989, Reference van der Merwe and Medina1991; Cerling et al. Reference Cerling, Harris, MacFadden, Leakey, Quade, Eisenmann and Ehleringer1997; Koch, Reference Koch1998). On the other hand, the C4 photosynthetic pathway has δ13C values between –14 ‰ and –10 ‰, and is usually found in grasses as well as trees and shrubs from warm regions (Smith & Epstein, Reference Smith and Epstein1971; Cerling, Reference Cerling, Sage and Monson1999; Medrano & Flexas, Reference Medrano, Flexas, Azcón-Bieto and Talón2000). The third photosynthetic pathway, CAM (crassulacean acid metabolism), is found in succulent plants such as cacti, bromeliads or agaves, with δ13C values between –35 ‰ and –12 ‰ (Gröcker, Reference Gröcker1997; Andrade et al. Reference Andrade, de la Barrera, Reyes-García, Ricalde, Vargas-Soto and Cervera2007).

Herbivores eat plants, incorporating the carbon from those plants into their tissues and structures such as dental enamel. The isotopic values are correlated with those of the plants, but vary in carbon isotopic composition by as much as a 14.1 ‰ increment (Cerling & Harris, Reference Cerling and Harris1999). Based on that variation, modern animals that eat C4 plants will have δ13C values between –2 ‰ and 2 ‰. Carbon isotopic values between –9 ‰ and –19 ‰ will be found in herbivores eating C3 plants, while those eating both types of plants will have δ13C values between –2 ‰ and –9 ‰ (MacFadden & Cerling, Reference MacFadden and Cerling1996). However, given that C4 plants became dominant by Hemphillian time (c. 8 Ma ago), this classification is not readily applied to older, pre-Hemphillian mammal taxa. Zanazzi & Kohn (Reference Zanazzi and Kohn2008) have therefore proposed that δ13C values of –15 ‰ to –21 ‰ indicate the presence of mesic, closed-canopy forest; –13 ‰ to –8 ‰ woodlands; and –8 ‰ xeric grasslands.

On the other hand, oxygen is incorporated into animals by inhalation, from water in food and mainly by ingested water. Such oxygen is in equilibrium with what is lost through CO2 exhalation, faeces, urine and sweat. Other factors such as physiology, climate and habitat can modify such balance (Sánchez, Reference Sánchez, Alcorno, Redondo and Toledo2005). The ingested oxygen mostly comes from the ingested water that is present from rain water, in turn affected by latitude, longitude and rain quantity, but mainly temperature (Dansgaard, Reference Dansgaard1964; Castillo, Morales & Ramos, Reference Castillo, Morales and Ramos1985). Oxygen isotopic composition (18O/16O) is frequently used for palaeoclimatic and palaeoecological studies (Bocherens et al. Reference Bocherens, Koch, Mariotti, Geraads and Jeager1996; Kohn, Reference Kohn1996; Sponheirmer & Lee-Thorp, Reference Sponheirmer and Lee-Thorp1999; Schoeninger, Kohn & Valley, Reference Schoeninger, Kohn, Valley, Ambrose and Katzemberg2000).

2. Materials and methods: sample extraction and preparation

A bulk sample (belonging to the Colección Nacional de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México) was taken from isolated chick teeth and processed in the Stable Isotope Laboratory at the Instituto de Geología, UNAM, by the method proposed by Koch, Tuross & Fogel (Reference Koch, Tuross and Fogel1997). First, 20 mg of enamel was ground and sieved (125 μm mesh) to obtain a fine and uniform powder. Then 10 mL of hydrogen peroxide at 30 % was added to eliminate the organic matter. After 2 h, the samples were centrifuged and the hydrogen peroxide decanted and washed again three times with water type I (grade HPLC 18.2 MΩ).

After the washing, 5 mL of a buffer solution, Ca(CH3CO2)2-CH3COOH 1.0 M, pH 4.75, was added and the mixture was allowed to rest for 9 h. The buffer solution was decanted and the samples were washed another three times with water type I. Finally, to eliminate any remaining water, ethanol was added and the solution was left for 20 h in an oven at 90 °C. Isotopic ratios were determined with a Finnigan MAT 253 mass spectrometer with a dual inlet system, and auxiliary Gas Bench equipment with a GC Pal autosampler with a temperature-controlled aluminium plate adjoined to the mass spectrometer (Révész & Landwehr, Reference Révész and Landwehr2002). Results were reported as δ18OVPDB and δ13CVPDB, normalized using NBS-19, NBS-18 and LSVEC to the Vienna Pee Dee Belemnite (VPDB) scale in accordance with the corrections described by Coplen (Reference Coplen1988), Werner & Brand (Reference Werner and Brand2001) and Coplen et al. (Reference Coplen, Brand, Gehre, Gröning, Meijer Harro, Toman and Verkouteren2006). For this technique, the standard deviation was 0.2 ‰ for oxygen and carbon.

Finally, we compared the isotopic values of carbon and oxygen with those obtained by Zanazzi & Kohn (Reference Zanazzi and Kohn2008) of Leptomeryx speciosus from the Late Eocene (Chadronian) White River Group and L. evansi from the Orellan part of this group (Table 1).

Table 1. Carbon and oxygen isotopic values of Leptomeryx sp. from the Yolomécatl Formation, L. speciosus and L. evansi from the White River Group. The δ18OVSMOW values of specimens from White River Group were transformed to δ18OVPDB using Faure's (Reference Faure1977) equation: δ18OVPDB= (0.97002 × δ18OVSMOW) −29.98. δ18O values are expressed in VPDB ‰. White River Group values were taken from Zanazzi & Kohn (Reference Zanazzi and Kohn2008).

3. Results

The δ13C value of the Leptomeryx sp. specimen from Yolomécatl is –12.5 ‰ and that of δ18O is –4.1 ‰. The carbon isotopic value falls within the range reported by Zanazzi & Kohn (Reference Zanazzi and Kohn2008) for Leptomeryx speciosus and L. evansis from the Chadronian and Orellanian portions of the White River Group. In the case of δ18O value, this is similar to that of Leptomeryx speciosus but different from that shown by L. evansi (Fig. 2a–d).

Figure 2. Comparison of (a, b) carbon and (c, d) oxygen isotopic values of Leptomeryx specious and L. evansi from the White River Group and Leptomeryx sp. from the Yolomécatl Formation.

4. Discussion

4.a. Diet

The carbon value of Leptomeryx sp. indicates that this individual fed only on C3 plants; Wall & Collins (Reference Wall and Collins1998) and Webb (Reference Webb, Janis, Scott and Jacobs1998) had pointed out that Leptomeryx was a small herbivore that fed on leaves and fruit, which are C3 plants (Medrano & Flexas, Reference Medrano, Flexas, Azcón-Bieto and Talón2000). Zanazzi & Kohn (Reference Zanazzi and Kohn2008) mentioned that the Late Eocene (Chadronian) Leptomeryx speciosus from the White River Group fed on C3 plants as observed in the Yolomécatl specimen. The Early Oligocene (Orellan) Leptomeryx evansi from the same group had a mixed C3/C4 diet however, which indicates that C4 plants were ingested or, alternatively, that the C3 plants on which L. evansi fed were water-stressed (due to a scarcity/lack of water), an environmental condition that altered its δ13C values; this is confirmed by microwear studies (see Zanazzi & Kohn, Reference Zanazzi and Kohn2008; Mathis & MacFadden, Reference Mathis and MacFadden2010; Shackelton, Reference Shackelton2016). Further, Zanazzi & Kohn (Reference Zanazzi and Kohn2008) indicated that the δ18O values of Leptomeryx are consistent with these mammals having had an incompletely developed anterior intestine fermentation system, or that they depended on water to accomplish anterior intestine fermentation, and that they possibly fed at night, when humidity is greater, behaving just as the extant Indonesian Tragulus javanicus (mouse deer).

4.b. Habitat

The oxygen isotopic value of the Yolomécatl individual is similar to that of Leptomeryx speciosus (Chadronian, White River Group) and different from L. evansis (Orellan, same group), as shown in Table 1. However, the δ18O values of L. evansi fall within the range of L. speciosus values (see Table 1).

Likewise, the isotopic results obtained from the Yolomécatl Leptomeryx sp. indicate that it was a forest or forest/savanna ecotone dweller, as was the Chadronian L. speciosus from the White River Group, and clearly different that the Orellan L. evansi from the same group which preferred open, somewhat xeric vegetation areas (Zanazzi & Kohn, Reference Zanazzi and Kohn2008; Lukens, Reference Lukens2013).

On the other hand, Webb (Reference Webb, Janis, Scott and Jacobs1998) indicated that the Late Eocene Leptomeryx species lived in open forests. The palynologic record obtained from the Yolomécatl Formation discloses the presence of arboreal and herbaceous taxa in NW Oaxaca at that time, lending credence to this assertion (see online Supplementary Table S1, available at http://journals.cambridge.org/geo). In addition, the record of Amynodontopsis sp., Merycoidodon sp., Miohippus sp., Perchoerus probus, Poebrotherium sp. and Trigonias sp. from the same formation (Jiménez-Hidalgo et al. Reference Jiménez-Hidalgo, Smith, Guerrero-Arenas and Alvarado-Ortega2015; Ferrusquía-Villafranca, unpublished data), which were dwellers of forests, open forests or savannas (Zanazzi & Kohn, Reference Zanazzi and Kohn2008; Bottrell, Reference Bottrell2009; Boardman, Reference Boardman2013; Boardman & Secord, Reference Boardman and Secord2013; Evans & Janis, Reference Evans and Janis2014), also strengthens this theory.

5. Conclusions

The results of this study lead us to conclude that the Leptomeryx sp. from the Late Eocene (Uintan) Yolomécatl Formation fed only on C3 plants and lived in a forest or in a forest/savanna ecotone. This scenario is consistent with the palynologic record of this formation, which indicates the presence of arboreal and herbaceous vegetation cover, and with the presence of mammal taxa known to lived in an environment similar to that of Leptomeryx sp. Both records disclose a tropical environment in northwestern Oaxaca during Late Eocene time.

Acknowledgements

We are indebted to the Instituto de Geología, Universidad Nacional Autónoma de México (UNAM) for its support, and to the Dirección General de Asuntos del Personal Académico de la UNAM (DGAPA) for their financial assistance through grants PAPIIT IN110614 and IA10407 to develop this project. The analysis was carried out in the Laboratorio de Isótopos Estables and Laboratorio Universitario de Geoquímica Isotópica (LUGIS) of Institutos de Geología and Geofísica, UNAM by our colleagues Edith Cienfuegos Alvarado and Francisco J. Otero Trujano, to whom we are grateful. We also thank two anonymous reviewers for their suggested changes that contributed to the improvement of this publication.

Declaration of interests

None

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/S0016756817000747.

References

Andrade, J. L., de la Barrera, E., Reyes-García, C., Ricalde, M. F., Vargas-Soto, G. & Cervera, C. J. 2007. El metabolismo ácido de las crasuláceas: Diversidad, fisiología ambiental y productividad. Boletín de la Sociedad Botánica de México 87, 3750.Google Scholar
Andrews, P. & Hixson, S. 2014. Taxon-free methods of palaeoecology. Annales Zoologici Fennici 51, 269–84.Google Scholar
Black, C. C. & Stephens, J. J. III 1973. Rodents from the Paleogene of Guanajuato, Mexico. Occasional Papers of the Museum of Texas Technical University 14, 110.Google Scholar
Boardman, G. S. 2013. Paleoecology of Nebraska's ungulates during the Eocene-Oligocene climate transitions. Ph.D. thesis, University of Nebraska, Nebraska, USA. Published thesis.Google Scholar
Boardman, G. S. & Secord, R. 2013. Stable isotope paleoecology of White River during the Eocene-Oligocene climate transitions in the Northwestern Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 375, 3849.CrossRefGoogle Scholar
Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jeager, J. J. 1996. Isotopic biogeochemistry (δ13C, δ18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11, 306–18.Google Scholar
Bottrell, P. M. 2009. Stable isotopes evidence on the diet and habitat preferences of Eocene Amynodontid Amynodontopsis bodei. Master of Science thesis, University of Wyoming, Wyoming, USA. Published thesis.Google Scholar
Castillo, R., Morales, P. & Ramos, S. 1985. El oxígeno- 18 en las aguas meteóricas de México. Revista Mexicana de Física 31, 637–47.Google Scholar
Cerling, T. E. 1999. Paleorecords of C4 plants and ecosystems. In C4 Plant Biology (eds Sage, R. F. & Monson, R. K.), pp. 445–69. San Diego: Academic Press.Google Scholar
Cerling, T. E. & Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–63.CrossRefGoogle ScholarPubMed
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V. & Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–8.Google Scholar
Clark, J., Beerbower, J. R. & Kietze, K. K. 1967. Oligocene Sedimentation, Stratigraphy, Paleoecology and Paleoclimatology in the Big Badlands of South Dakota. Field Museum of Natural History, Chicago, Fieldiana Geology Memoir no. 5, 158 pp.Google Scholar
Coplen, T. B. 1988. Normalization of oxygen and hydrogen isotope data. Chemical Geology 72, 293–7.Google Scholar
Coplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer Harro, A. J., Toman, B. & Verkouteren, R. M. 2006. New guidelines for δ13C measurements. Analytical Chemistry 78, 2439–41.CrossRefGoogle ScholarPubMed
Damuth, J. 1990. Problems in estimating body masses of archaic ungulates using dental measurements. In Body Size in Mammalian Paleobiology: Estimation and Biological Implications (eds Damuth, J. & MacFadden, B. J.), pp. 229–53. Cambridge: Cambridge Universtiy Press.Google Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16, 436–68.Google Scholar
Evans, A. R. & Janis, C. M. 2014. The evolution of high dental complexity in the horses lineage. Annales Zoologici Fennici 51, 73–9.Google Scholar
Faure, G. 1977. Principles of Isotope Geology. New York: John Wiley & Sons, 589 pp.Google Scholar
Ferrusquía-Villafranca, I. 1969. Rancho Gaitan local fauna, northeastern Chihuahua. Boletín de la Sociedad Geológica Mexicana 30, 99138.Google Scholar
Ferrusquía-Villafranca, I. 1989. A new rodent genus from Central México and its bearing on the origin of the Caviomorpha. In Paper on Fossil Rodents in Honor of Albert Elmer Wood (eds Black, C. C. & Dawson, M. R.), pp. 91117. Natural History Museum, Los Angeles, Science Series 33.Google Scholar
Ferrusquía-Villafranca, I., Galindo-Hernández, C. & Barrios-Rivera, H. 1997. Los mamíferos oligocénicos de México: revisión y adición a la Fauna Local Rancho Gaitán, Formación Prietos, Chadroniano de Chihuahua nororiental. In Homenaje al Profesor Ticul Álvarez (eds Arroyo-Cabrales, J. & Polaco, O. J.), pp. 97134. Instituto Nacional de Antropología e Historia, Mexico, Colección Científica.Google Scholar
Ferrusquía-Villafranca, I., Jiménez-Hidalgo, E., Ortiz-Mendieta, J. A. & Bravo-Cuevas, V. M. 2002. El registro paleogénico de mamíferos de México y su significación geológico-paleontológica. In Avances en los Estudios Paleomastozoológicos en México (coords Montellano-Ballesteros, M. & Arroyo-Cabrales, J.), pp. 2545. Instituto Nacional de Antropología e Historia, Mexico, Colección Científica.Google Scholar
Ferrusquía-Villafranca, I., Ruíz-González, J. E., Torres-Hernández, J. R., Anderson, T. H., Urrutia-Fucugauchi, J., Martínez-Hernández, E. & García-Villegas, F. 2016. Cenozoic geology of Yolomécatl-Tlaxiaco area, northwestern Oaxaca, southeastern México: Stratigraphy, structure and regional significance. Journal South of America Earth Sciences 72, 191226.Google Scholar
Fries, C. Jr., Hibbard, C. W. & Dunkle, D. H. 1955. Early Cenozoic vertebrates in the Red Conglomerate at Guanajuato, Mexico. Smithsonian Miscellaneous Collections 123, 125.Google Scholar
Gröcker, D. R. 1997. Stable-isotopic studies on the collagenic and hydroxylapatite components of fossils: Palaeoecological implications: Lethaia 30, 6578.CrossRefGoogle Scholar
Jiménez-Hidalgo, E., Smith, K. T., Guerrero-Arenas, R. & Alvarado-Ortega, J. 2015. The first Late Eocene continental faunal assemblage from tropical North America. Journal of South American Earth Sciences 57, 3948.CrossRefGoogle Scholar
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26, 573613.Google Scholar
Koch, P. L., Tuross, N. & Fogel, M. L. 1997. The effects of simple treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24, 417–29.Google Scholar
Kohn, M. J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochemical et Cosmochimica Acta 60, 4811–29.Google Scholar
Lukens, W. E. 2013. Paleopedology and paleogeomorphology of the Early Oligocene Orella and Whitney member, Brule Formation, White River Group, Toadstool Geology Park, Nebraska. Master of Science thesis, Temple University, Philadelphia, USA. Published thesis.Google Scholar
MacFadden, B. & Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 16, 103–15.Google Scholar
Mathis, J. E. & MacFadden, B. J. 2010. Quantify Leptomeryx (Mammalian: Artiodactyla) enamel surface are across the Eocene-Oligocene transition in Nebraska. Palaios 25, 682–7.Google Scholar
Medrano, H. & Flexas, J. 2000. Fotorrespiración y mecanismos de concentración del dióxido de carbono. In Fundamentos de Fisiología Vegetal (eds Azcón-Bieto, J. & Talón, M.), pp. 187201. Madrid: McGraw-Hill Interamericana.Google Scholar
Montellano-Ballesteros, M. & Jiménez-Hidalgo, E. 2006. Mexican fossil mammals: Who, where and when. In Studies on Mexican Paleontology (eds Vega, F. J., Nyborg, T. G., Perilliat, M. C., Montellano-Ballesteros, M., Cevallos-Ferriz, S. R. S. & Quiroz-Barroso, S. A.), pp. 249273. The Netherlands: Springer.Google Scholar
Morán-Zenteno, D. J., Cerca, M. & Keppie, J. D. 2007. The Cenozoic tectonic and magmatic evolution of southwestern México: Advances and problems of interpretation. Special Paper of the Geological Society of America 422, 7191.Google Scholar
Nieto-Samaniego, A. F., Alaniz-Alvarez, S. A., Silva-Romo, G., Equiza-Castro, M. H. & Mendoza-Rosales, C. C. 2006. Latest Cretaceous to Miocene deformation events in the eastern Sierra Madre del Sur, Mexico, inferred from the geometry and age of major structures. Bulletin of the Geological Society of America 118 (1–2), 238–52.Google Scholar
Novacek, M. J., Ferrusquía-Villafranca, I., Flynn, J. J., Wyss, A. R. & Norell, M. 1991. Wasatchian (Early Eocene) mammals and other vertebrates from Baja California, Mexico: The Lomas Las Tetas de Cabra Fauna. American Museum of Natural History Bulletin 208, 188.Google Scholar
O'Leary, M. H. 1988. Carbon isotopes in photosynthesis. Bioscience 38, 328–36.CrossRefGoogle Scholar
Retallack, G. J. 1983. Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota. Geological Society of America Special Paper 193, 182.Google Scholar
Révész, K. M. & Landwehr, J. M. 2002. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH–11 calcite. Rapid Communications in Mass Spectrometry 16, 2102–14.Google Scholar
Sánchez, B. 2005. Reconstrucción del ambiente de mamíferos extintos a partir del análisis isotópico de los restos esqueléticos. In Nuevas Técnicas Aplicadas al Estudio de los Sistemas Ambientales: Los Isótopos Estables (eds Alcorno, P., Redondo, R. & Toledo, J.), pp. 4964. Madrid: Universidad Autónoma de Madrid.Google Scholar
Schoeninger, M. J., Kohn, M. & Valley, J. W. 2000. Tooth oxygen isotopes ratios as paleoclimate monitors in arid ecosystems. In Biogeochemical Approaches to Paleodietary Analysis (eds Ambrose, S. H. & Katzemberg, M. A.), pp. 117–40. New York: Kluwer Academic/Plenum Publisher.Google Scholar
Shackelton, A. L. 2016. Regional and stratigraphic variability of microwear on the molars of Leptomeryx from Eocene-Oligocene strata of Wyoming and Nebraska. Master Thesis, Temple University, Philadelphia, USA. Published thesis.Google Scholar
Smith, B. N. & Epstein, S. 1971. Two categories of 13C/12C ratios for higher plants. Plant Phyisiology 47, 380–4.Google Scholar
Sponheirmer, M. & Lee-Thorp, J. A. 1999. Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science 26, 723–8.CrossRefGoogle Scholar
van der Merwe, N. J. & Medina, E. 1989. Photosynthesis and 13C/12C ratios in Amazonian rain forest. Geochimica et Cosmochimica Acta 53, 1091–4.Google Scholar
van der Merwe, N. J. & Medina, E. 1991. The canopy effect, carbon isotopes ratios and foodwebs in Amazonia. Journal of Archaeological Science 18, 249–59.Google Scholar
Wall, W. P. & Collins, C. M. 1998. A comparison of feeding adaptations in two primitive ruminants, Hypertragulus and Leptomeryx, from the Oligocene deposits of Badlands National Park. National Park Service Paleontological Research 1, 13–7.Google Scholar
Webb, S. D. 1998. Hornless ruminants. In Evolution of Tertiary Mammals of North America (eds Janis, C. M., Scott, K. M. & Jacobs, J. L.), pp. 463–90. Cambridge: Cambridge University Press.Google Scholar
Werner, R. A. & Brand, W. A. 2001. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry 15, 501–19.Google Scholar
Zanazzi, A. & Kohn, M. J. 2008. Ecology and physiology of White River mammals based on stable isotopes ratios of teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 57, 2237.Google Scholar
Figure 0

Figure 1. Location and geology of the study area.

Figure 1

Table 1. Carbon and oxygen isotopic values of Leptomeryx sp. from the Yolomécatl Formation, L. speciosus and L. evansi from the White River Group. The δ18OVSMOW values of specimens from White River Group were transformed to δ18OVPDB using Faure's (1977) equation: δ18OVPDB= (0.97002 × δ18OVSMOW) −29.98. δ18O values are expressed in VPDB ‰. White River Group values were taken from Zanazzi & Kohn (2008).

Figure 2

Figure 2. Comparison of (a, b) carbon and (c, d) oxygen isotopic values of Leptomeryx specious and L. evansi from the White River Group and Leptomeryx sp. from the Yolomécatl Formation.

Supplementary material: File

Ferrusquía-Villafranca et al supplementary material 1

Ferrusquía-Villafranca et al supplementary material

Download Ferrusquía-Villafranca et al supplementary material 1(File)
File 85 KB