Article contents
A QUOTIENT OF THE LUBIN–TATE TOWER
Published online by Cambridge University Press: 27 July 2017
Abstract
In this article we show that the quotient ${\mathcal{M}}_{\infty }/B(\mathbb{Q}_{p})$ of the Lubin–Tate space at infinite level
${\mathcal{M}}_{\infty }$ by the Borel subgroup of upper triangular matrices
$B(\mathbb{Q}_{p})\subset \operatorname{GL}_{2}(\mathbb{Q}_{p})$ exists as a perfectoid space. As an application we show that Scholze’s functor
$H_{\acute{\text{e}}\text{t}}^{i}(\mathbb{P}_{\mathbb{C}_{p}}^{1},{\mathcal{F}}_{\unicode[STIX]{x1D70B}})$ is concentrated in degree one whenever
$\unicode[STIX]{x1D70B}$ is an irreducible principal series representation or a twist of the Steinberg representation of
$\operatorname{GL}_{2}(\mathbb{Q}_{p})$.
MSC classification
- Type
- Research Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author 2017
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20171129145013454-0906:S2050509417000159:S2050509417000159_inline7.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20171129145013454-0906:S2050509417000159:S2050509417000159_inline8.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20171129145013454-0906:S2050509417000159:S2050509417000159_inline9.gif?pub-status=live)
- 8
- Cited by