No CrossRef data available.
Article contents
Deligne-Beilinson cohomology of the universal K3 surface
Published online by Cambridge University Press: 15 August 2022
Abstract
O’Grady’s generalised Franchetta conjecture (GFC) is concerned with codimension 2 algebraic cycles on universal polarised K3 surfaces. In [4], this conjecture has been studied in the Betti cohomology groups. Following a suggestion of Voisin, we investigate this problem in the Deligne-Beilinson (DB) cohomology groups. In this paper, we develop the theory of Deligne-Beilinson cohomology groups on (smooth) Deligne-Mumford stacks. Using the automorphic cohomology group and Noether-Lefschetz theory, we compute the 4th DB-cohomology group of universal oriented polarised K3 surfaces with at worst an
$A_1$
-singularity and show that GFC for such family holds in DB-cohomology. In particular, this confirms O’Grady’s original conjecture in DB cohomology.
MSC classification
- Type
- Algebraic and Complex Geometry
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220814025111572-0750:S2050509422000603:S2050509422000603_inline1012.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220814025111572-0750:S2050509422000603:S2050509422000603_inline1013.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220814025111572-0750:S2050509422000603:S2050509422000603_inline1014.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220814025111572-0750:S2050509422000603:S2050509422000603_inline1015.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220814025111572-0750:S2050509422000603:S2050509422000603_inline1016.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220814025111572-0750:S2050509422000603:S2050509422000603_inline1017.png?pub-status=live)