Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-05T15:00:25.690Z Has data issue: false hasContentIssue false

PROPAGATION AND MANAGEMENT OF GLIRICIDIA SEPIUM PLANTED FALLOWS IN SUB-HUMID EASTERN ZAMBIA

Published online by Cambridge University Press:  24 June 2004

R. CHINTU
Affiliation:
Msekera Research Station, World Agroforestry Center-ICRAF Project, P.O. Box 510089, Chipata, Zambia
P. L. MAFONGOYA
Affiliation:
Msekera Research Station, World Agroforestry Center-ICRAF Project, P.O. Box 510089, Chipata, Zambia
T. S. CHIRWA
Affiliation:
Msekera Research Station, World Agroforestry Center-ICRAF Project, P.O. Box 510089, Chipata, Zambia
E. KUNTASHULA
Affiliation:
Msekera Research Station, World Agroforestry Center-ICRAF Project, P.O. Box 510089, Chipata, Zambia
D. PHIRI
Affiliation:
Peace Corps, Lusaka, Zambia
J. MATIBINI
Affiliation:
Msekera Research Station, World Agroforestry Center-ICRAF Project, P.O. Box 510089, Chipata, Zambia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gliricidia sepium features prominently as a soil replenishment tree in planted coppicing fallows in eastern Zambia. Its usual method of propagation, through nurseryseedlings, is costly and may possibly hinder wider on-farm adoption. We compared fallows propagated by potted and bare root seedlings, direct seeding and stem cuttings, in terms of tree coppice biomass production, soil inorganic N availability and post-fallow maize yields under semi-arid conditions. We hypothesized that cutting fallows initially in May (off-season) would increase subsequent seasonal coppice biomass production as opposed to cutting them in November (at cropping). The tree survival and biomass order after two years was: potted = bare root > direct > cuttings. The post-fallow maize productivity sequence was: fertilized maize = potted = bare root > direct > cuttings = no-tree unfertilized controls, across seasons. However, farmers may prefer directly seeded fallows owing to their cost effectiveness. Soil inorganic N and maize yield were significantly higher in May-cut than in November-cut fallows. Preseason topsoil inorganic N and biomass N input correlated highly with maize yields. This implies that bothparameters may be used to predict post-fallow crop yields.

Type
Research Article
Copyright
© Cambridge University Press 2004