Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T02:11:03.464Z Has data issue: false hasContentIssue false

EFFECTS OF MANURE AND FERTILIZER ON GRAIN YIELD, SOIL CARBON AND PHOSPHORUS IN A 13-YEAR FIELD TRIAL IN SEMI-ARID KENYA

Published online by Cambridge University Press:  30 September 2005

F. M. KIHANDA
Affiliation:
Kenya Agricultural Research Institute, Embu Regional Research Centre, PO Box 27, Embu, Kenya
G. P. WARREN
Affiliation:
Department of Soil Science, School of Human and Environmental Sciences, The University of Reading, PO Box 233, Reading, RG6 6DW, United Kingdom
A. N. MICHENI
Affiliation:
Kenya Agricultural Research Institute, Embu Regional Research Centre, PO Box 27, Embu, Kenya
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Long-term indicators of soil fertility were assessed by measuring grain yield, soil organic carbon (SOC) and soil Olsen phosphorous for a P-deficient soil. In one set of treatments, goat manure was applied annually for 13 years at 0, 5 and 10 t ha−1, and intercrops of sorghum/cowpea, millet/green gram and maize/pigeonpea were grown. Yield depended on rainfall and trends with time were not identifiable. Manure caused an upward trend in SOC, but 10 t ha−1 manure did not give significantly more SOC than 5 t ha−1. Only 10 t ha−1 manure increased Olsen P. Measurements of both SOC and Olsen P are recommended. In another set of treatments, manure was applied for four years; the residual effect lasted another seven to eight years when assessed by yield, SOC and Olsen P. Treatment with mineral fertilizers provided the same rates of N and P as 5 t ha−1 manure and yields from manure and fertilizer were similar. Fertilizer increased Olsen P but not SOC. Management systems with occasional manure application and intermediate fertilizer applications should be assessed. Inputs and offtakes of C, N and P were measured for three years. Approximately 16, 25 and 11% of C, N and P respectively were stabilized into soil organic matter from 5 t ha−1 a−1 manure. The majority of organic P was fixed as soil inorganic P.

Type
Research Article
Copyright
2005 Cambridge University Press