Hostname: page-component-7b9c58cd5d-bslzr Total loading time: 0.001 Render date: 2025-03-15T04:40:27.987Z Has data issue: false hasContentIssue false

On periodic Stokesian Hele-Shaw flows with surface tension

Published online by Cambridge University Press:  01 December 2008

J. ESCHER
Affiliation:
Institute of Applied Mathematics, Leibniz University of Hanover, Welfengarten 1, D-30167 Hanover, Germany email: escher@ifam.uni-hannover.de; matioc@ifam.uni-hannover.de
B.-V. MATIOC
Affiliation:
Institute of Applied Mathematics, Leibniz University of Hanover, Welfengarten 1, D-30167 Hanover, Germany email: escher@ifam.uni-hannover.de; matioc@ifam.uni-hannover.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider a 2π-periodic and two-dimensional Hele-Shaw flow describing the motion of a viscous, incompressible fluid. The free surface is moving under the influence of surface tension and gravity. The motion of the fluid is modelled using a modified version of Darcy's law for Stokesian fluids. The bottom of the cell is assumed to be impermeable. We prove the existence of a unique classical solution for a domain which is a small perturbation of a cylinder. Moreover, we identify the equilibria of the flow and study their stability.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

References

[1]Amann, H. (1995) Linear and Quasilinear Parabolic Problems, Vol. I, Birkhäuser, Basel, Switzerland.Google Scholar
[2]Arendt, W. & Bu, S. (2004) Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proceedings of the Edinburgh Mathematical Society 47, 1533.CrossRefGoogle Scholar
[3]Escher, J. (1997) On moving boundaries in deformable media. Adv. Math. Sci. Appl. 7 (1), 275316.Google Scholar
[4]Escher, J. & Matioc, B.-V. (2008) A moving boundary problem for periodic Stokesian Hele-Shaw flows, Interfaces and Free Boundaries, to appear.Google Scholar
[5]Escher, J. & Matioc, B.-V. (2008) Stability of the equilibria for periodic Stokesian Hele-Shaw flows. J. Evol. Eq., online 8.7.2008.CrossRefGoogle Scholar
[6]Escher, J. & Prokert, G. (2001) Stability of the equilibria for spatially periodic flows in porous media. Nonlin. Anal. 45, 10611080.Google Scholar
[7]Escher, J. & Simonett, G. (1991) Maximal regularity for a free boundary problem. Nonlin. Diff. Eq. Appl. 2, 463510.Google Scholar
[8]Escher, J. & Simonett, G. (1996) Analyticity of the interface in a free boundary problem. Math. Ann. 305, 435459.Google Scholar
[9]Escher, J. & Simonett, G. (1997) Classical solutions of multidimensional Hele-Shaw models. SIAM J. Math. Anal. 28 (5), 10281047.Google Scholar
[10]Gilbarg, D. & Trudinger, T. S. (1997) Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York.Google Scholar
[11]Kondic, L., Palffy-Mahorny, P. & Shelley, M. J. (1996) Models of non-Newtonian Hele-Shaw flow. Phys. Rev. E 54 (5), R4536R4539.Google Scholar
[12]Lunardi, A. (1995) Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, Switzerland.Google Scholar
[13]Schmeisser, H.-J. & Triebel, H. (1987) Topics in Fourier Analysis and Function Spaces, John Wiley and Sons, New York.Google Scholar
[14]Shaughnessy, E. J., Katz, I. M. & Schaffer, J. P. (2005) Introduction to Fluid Mechanics, Oxford University Press, New York.Google Scholar