Hostname: page-component-7b9c58cd5d-nzzs5 Total loading time: 0 Render date: 2025-03-15T15:23:45.578Z Has data issue: false hasContentIssue false

A Mellin transform solution to a second-order pantograph equation with linear dispersion arising in a cell growth model

Published online by Cambridge University Press:  05 January 2011

B. van BRUNT
Affiliation:
Institute of Fundamental Sciences, Massey University Manawatu, Private Bag 11-222, Palmerston North 4442, New Zealand
G. C. WAKE
Affiliation:
Centre for Mathematics-in-Industry, Institute of Information and Mathematical Sciences, Massey University Auckland, Private Bag 102-904, NSMC, Auckland 0745, New Zealand email: g.c.wake@massey.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study the probability density function solutions to a second-order pantograph equation with a linear dispersion term. The functional equation comes from a cell growth model based on the Fokker–Planck equation. We show that the equation has a unique solution for constant positive growth and splitting rates and construct the solution using the Mellin transform.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

References

[1]Ambartsumyan, V. A. (1944) On the fluctuation of the brightness of the Milky Way. Dokl. Akad. Nauk SSSR 44, 223226.Google Scholar
[2]Basse, B., Baguley, B., Marshall, E., Joseph, W., van Brunt, B., Wake, G. & Wall, D. (2004) Modelling cell death in human tumour cell lines exposed to the anticancer drug paclitaxel. J. Math. Bio. 49 (4), 329357.CrossRefGoogle Scholar
[3]Basse, B., Wake, G., Wall, D. & van Brunt, B. (2004) On a cell-growth model for plankton. IMA J. Math. Med. Bio. 21, 4961.CrossRefGoogle ScholarPubMed
[4]Bogachev, L., Derfel, G., Molchanov, S. & Ockendon, J. (2008) On bounded solutions of the balanced generalized pantograph equation. In: Chow, P. L., Mordukhovich, B. & Yin, G. (editors), Topics in Stochastic Analysis and Nonparametric Estimation, IMA, Vol. 145, Springer, New Mexico, pp. 2949.Google Scholar
[5]Derfel, G. (1989) Probabilistic method for a class of functional differential equations. Ukrain. Mat. Zh. 41, 13221327. (English translation: (1990) Ukrainian Math. J. 41, 1137–1141.CrossRefGoogle Scholar
[6]Derfel, G. & Iserles, A. (1997) The pantograph equation in the complex plane. J. Math. Anal. Appl. 213, 117132.CrossRefGoogle Scholar
[7]Epstein, B. (1948) Some applications of the Mellin transform in statistics. Ann. Math. Statist. 19, 370379.CrossRefGoogle Scholar
[8]Fox, L., Mayers, D. F., Ockendon, J. R. & Tayler, A. B. (1971) On a function differential equation. J. Inst. Math. App. 8, 271307.CrossRefGoogle Scholar
[9]Gardiner, C. W. (2004) Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[10]Gaver, D. P. (1964) An absorption probablility problem. J. Math. Anal. Appl. 9 (N3), 384393.CrossRefGoogle Scholar
[11]Hall, A. J., Wake, G. C. & Gandar, P. W. (1991) Steady size distributions for cells in one dimensional plant tissues. J. Math. Bio. 30 (2), 101123.CrossRefGoogle Scholar
[12]Hall, A. J. & Wake, G. C. (1989) A functional differential equation arising in the modelling of cell-growth. J. Aust. Math. Soc. Ser. B 30, 424435.CrossRefGoogle Scholar
[13]Hall, A. J. & Wake, G. C. (1990) A functional differential equation determining steady size distributions for populations of cells growing exponentially. J. Aust. Math. Soc. Ser. B, 31, 344353.CrossRefGoogle Scholar
[14]Iserles, A. (1993) On the generalized pantograph functional differential equation. Eu. J. Appl. Math. 4, 138.CrossRefGoogle Scholar
[15]Jakeman, E. (1999) K-distributed noise. J. Opt. A: Pure Appl. Opt. 1, 784789.CrossRefGoogle Scholar
[16]Kato, T. & McLeod, J. B. (1971) The functional-differential equation y′(x) = ayx) + by(x). Bull. Am. Math. Soc. 77, 891937.Google Scholar
[17]Kim, H. K. (1998) Advanced Second Order Functional Differential Equations, Ph.D. thesis, Massey University, New Zealand.Google Scholar
[18]Marshall, J., van-Brunt, B. & Wake, G. (2002) Natural boundaries for solutions to a certain class of functional differential equations. J. Math. Anal. Appl. 268, 157170.CrossRefGoogle Scholar
[19]Morgan, D. (2000) A remarkable sequence derived from Euler products. J. Math. Phys. 41 (10), 71097121.CrossRefGoogle Scholar
[20]Ockendon, J. & Tayler, A. (1971) The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. Ser. A 322, 447468.Google Scholar
[21]Springer, M. & Thompson, W. (1966) The distribution of products of independent random variables. SIAM J. Appl. Math. 14 (3), 511526.CrossRefGoogle Scholar
[22]Tough, R. (1987) A Fokker-Planck description of K-distributed noise. J. Phys. A: Math. Gen. 20, 551567.CrossRefGoogle Scholar
[23]van-Brunt, B., Wake, G. C. & Kim, H. K. (2001) On a singular Sturm–Liouville problem involving an advanced functional differential equation. Euro. J. Appl. Math. 12, 625644.CrossRefGoogle Scholar
[24]Wake, G. C., Cooper, S., Kim, H. K. & van-Brunt, B. (2000) Functional differential equations for cell-growth models with dispersion. Commun. Appl. Anal. 4, 561574.Google Scholar