Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T20:53:24.608Z Has data issue: false hasContentIssue false

Grain boundaries in the Swift–Hohenberg equation

Published online by Cambridge University Press:  10 August 2012

MARIANA HARAGUS
Affiliation:
Université de Franche-Comté, Laboratoire de Mathématiques, 25030 Besançon Cedex, France email: mharagus@univ-fcomte.fr
ARND SCHEEL
Affiliation:
School of Mathematics, University of Minnesota, 206 Church St. S.E., Minneapolis, MN 55455, USA email: scheel@umn.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the existence of grain boundaries in the Swift–Hohenberg equation. The analysis relies on a spatial dynamics formulation of the existence problem and a centre-manifold reduction. In this setting, the grain boundaries are found as heteroclinic orbits of a reduced system of ordinary differential equations in normal form. We show persistence of the leading-order approximation using transversality induced by wavenumber selection.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

References

[1]Cross, M. & Hohenberg, P. (1993) Pattern formation out of equilibrium. Rev. Modern Phys. 65, 8511112.Google Scholar
[2]Cross, M. & Newell, A. (1984) Convection patterns in large aspect ratio systems. Physica D 10, 299328.Google Scholar
[3]Ercolani, N., Indik, R., Newell, A. & Passot, T. (2000) The geometry of the phase diffusion equation. J. Nonlinear Sci. 10, 223274.Google Scholar
[4]Ercolani, N., Indik, R., Newell, A. & Passot, T. (2003) Global description of patterns far from onset: A case study. Complexity and nonlinearity in physical systems (Tucson, AZ, 2001). Phys. D 184, 127140.CrossRefGoogle Scholar
[5]Ercolani, N. & Venkataramani, S. (2009) A variational theory for point defects in patterns. J. Nonlinear Sci. 19, 267300.Google Scholar
[6]Fiedler, B. & Scheel, A. (2003) Spatio-temporal dynamics of reaction-diffusion patterns. In: Kirkilionis, M., Krmker, S., Rannacher, R. and Tomi, F. (editors), Trends in Nonlinear Analysis, Springer-Verlag, Berlin, Germany, 23152.Google Scholar
[7]Haragus, M. & Iooss, G. (2011) Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems. Universitext Series. Springer-Verlag, London; EDP Sciences, Les Ulis, France.Google Scholar
[8]Haragus, M. & Scheel, A. (2007) Interfaces between rolls in the Swift-Hohenberg equation. Int. J. Dyn. Syst. Differ. Equ. 1, 8997.Google Scholar
[9]Haragus, M. & Scheel, A. (to appear) Dislocations in an anisotropic Swift-Hohenberg equation. Comm. Math. Phys.Google Scholar
[10]Iooss, G. & Adelmeyer, M. (1998) Topics in Bifurcation Theory and Applications, 2nd ed., Advanced Series in Nonlinear Dynamics, 3, World Scientific Publishing, River Edge, NJ.Google Scholar
[11]James, G. & Sire, Y. (2008) Center Manifold Theory in the Context of Infinite One-Dimensional Lattices. The Fermi-Pasta-Ulam problem, Lecture Notes in Physics No. 728, Springer, Berlin, Germany, pp. 208238.Google Scholar
[12]Kirchgässner, K. (1982) Wave-solutions of reversible systems and applications. J. Differ. Equ. 45 (1), 113127.Google Scholar
[13]Malomed, B., Nepomnyashchy, A. & Tribelsky, M. (1990) Domain boundaries in convection patterns. Phys. Rev. A 42, 72447263.Google Scholar
[14]Mielke, A. (1991) Hamiltonian and Lagrangian Flows on Center Manifolds. With Applications to Elliptic Variational Problems, Lecture Notes in Mathematics No. 1489, Springer-Verlag, Berlin, Germany.Google Scholar
[15]Mielke, A. (1997) Instability and stability of rolls in the Swift-Hohenberg equation. Comm. Math. Phys. 189, 829853.Google Scholar
[16]Mielke, A. (2002) The Ginzburg-Landau Equation in Its Role as a Modulation Equation. Handbook of Dynamical Systems, Vol. 2, North-Holland, Amsterdam, Netherlands, pp. 759834.Google Scholar
[17]Newell, A. (1988) The dynamics of patterns: A survey. In: Proceedings of the Conference on Propagation in Systems Far From Equilibrium, Les Houches, 1987, Springer Ser. Synergetics No. 41, Springer, Berlin, pp. 122–155.Google Scholar
[18]Sandstede, B. & Scheel, A. (2004) Defects in oscillatory media: Toward a classification. SIAM J. Appl. Dyn. Syst. 3, 168.Google Scholar
[19]Sandstede, B. & Scheel, A. (2008) Relative Morse indices, Fredholm indices, and group velocities. Discr. Cont. Dyn. Sys. 20, 139158.Google Scholar
[20]Scheel, A. (2003) Radially symmetric patterns of reaction-diffusion systems. Mem. Am. Math. Soc. 165.Google Scholar
[21]Schneider, G. (1995) Validity and limitation of the Newell-Whitehead equation. Math. Nachr. 176, 249263.Google Scholar
[22]van den Berg, G. & van der Vorst, R. (2000) A domain-wall between single-mode and bimodal states. Diff. Int. Equ. 13, 369400.Google Scholar
[23]van Saarloos, W. & Hohenberg, P. (1992) Fronts, pulses, sources and sinks in generalized complex GinzburgLandau equations. Physica D 56, 303367.CrossRefGoogle Scholar
[24]Vanderbauwhede, A. (1989) Centre Manifolds, Normal Forms and Elementary Bifurcations, Dynam. Report. Ser. Dynam. Systems Appl. vol. 2, Wiley, Chichester, UK, pp. 89169.Google Scholar
[25]Vanderbauwhede, A. & Iooss, G. (1992) Center Manifold Theory in Infinite Dimensions, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 1, Springer, Berlin, Germay, pp. 125163.Google Scholar