Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-05T23:02:45.990Z Has data issue: false hasContentIssue false

Extinction, stable pattern and their transition in a diffusive single species population with distributed maturity

Published online by Cambridge University Press:  01 June 2008

PEIXUAN WENG*
Affiliation:
School of Mathematics, South China Normal University, Guangzhou 510631, P.R. China email: wengpx@scnu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a single-species structured population with distributed maturity and spatial diffusion in a cylindrical domain subject to Neumann and Robin boundary conditions. We first establish the threshold property of the reaction–diffusion system with distributed delay and non-local interaction in a corresponding lower-dimensional domain, so that the system approaches either an extinction state or a stable spatially varying pattern. We then investigate the transition from the extinction state to the stable pattern of the system in the cylindrical domain.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

References

[1]Al-Omari, J. F. M. & Gourley, S. A. (2005) A non-local reaction–diffusion model for a single species with stage structure and distributed maturation delay. Euro. J. Appl. Math. 16, 3751.CrossRefGoogle Scholar
[2]Aronson, D. G. & Weinberger, H. F. (1975) Non-linear diffusion in population genetics, combustion, and nerve pulse propagation. In: ed. Goldstein, J. A.Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, vol. 446, Springer-Verlag, New York, pp. 549.CrossRefGoogle Scholar
[3]Britton, N. F. (1990) Spacial structures and periodic travelling waves in an integro-differential reaction–diffusion population model. SIAM J. Appl. Math. 50, 16631688.CrossRefGoogle Scholar
[4]Cross, M. & Hohenberg, P. C. (1993) Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.CrossRefGoogle Scholar
[5]Diekmann, O. (1979) Run for your life, A note on the asymptotic speed of propagation of an epidemic. J. Diff. Eqns. 33, 5873.CrossRefGoogle Scholar
[6]Field, R. J. & Burger, M. (1985) Oscillations and Traveling Waves in Chemical Systems, Wiley Interscience, New York.Google Scholar
[7]Garroni, M. G. & Menaldi, J. L. (1992) Green Functions for Second Order Parobolic Integro-differential Problems, Longman Scientific & Technical, New York.Google Scholar
[8]Gourley, S. A. (2000) Travelling front solutions of a non-local Fisher equation. J. Math. Biol. 41, 272284.CrossRefGoogle Scholar
[9]Gourley, S. A. & Britton, N. F. (1996) Apredator–prey reaction–diffusion system with non-local effects. J. Math. Biol. 34, 297333.CrossRefGoogle Scholar
[10]Gourley, S. A. & Wu, J. H. (2006) Delayed non-local diffusion systems in biological invasion and disease spread. In Nonlinear Dynamics and Evolution Equations (Hermann Brunner, Xiao-qiang Zhao & Xinfu Zou eds), Fields Inst. Commun., 48, Amer. Math. Soc., Providence, RI, 137–200.Google Scholar
[11]Hale, J. K. & Lunel, S. M. V. (1993) Introduction to Functional Differential Equations, Springer-Verlag, New York, 9091.CrossRefGoogle Scholar
[12]Liang, X. & Zhao, X.-Q. (2007) Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 140.CrossRefGoogle Scholar
[13]Liang, X. & Zhao, X.-Q. (2008) Erratum: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 61, 137138.CrossRefGoogle Scholar
[14]Lui, R. (1989) Biological growth and spread modeled by systems of recursions. I & II. Math. Biosci. 93, 269312.CrossRefGoogle ScholarPubMed
[15]Lunardi, A. (1995) Analytic Semigroups and Regularity in Parabolic Problems, Birkhauser, Basel-Boston-Berlin.Google Scholar
[16]Martin, R. H. & Smith, H. L. (1990) Abstract functional differential equations and reaction–diffusion systems. Trans. Amer. Math. Soc. 321, 144.Google Scholar
[17]Merzhanov, A. G. & Rumanov, E. N. (1999) Physics of reaction waves. Rev. Mod. Phys. 71, 11731210.CrossRefGoogle Scholar
[18]Muratov, C. B. (2004) A global variational structure and propagation of disturbances in reaction–diffusion systems of gradient type. Discrete Cont. Dyn. Syst. Ser. B, 4, 867892.Google Scholar
[19]Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag. New York.CrossRefGoogle Scholar
[20]Protter, M. H. & Weinberger, H. F. (1967) Maximum Principles in Differential Equation, Prentice Hall, New Jersey.Google Scholar
[21]Schaaf, K. W. (1987) Asymptotic behavior and traveling wave solutions for parabolic functional differential equations. Trans. Amer. Math. Soc. 302, 587615.Google Scholar
[22]Smith, H. L. (1995) Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Math. Surveys Monogr. 41, Providence: American Mathematical Society.Google Scholar
[23]Smith, H. L. & Zhao, X.-Q. (2000) Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal. 31, 514534.CrossRefGoogle Scholar
[24]So, J. W.-H., Wu, J. H., & Zou, X. F. (2001) A reaction–diffusion model for a single species with age atructure. I traveling wavefronts on the unbounded domains. Proc. R. Soc. London A 457, 18411853.CrossRefGoogle Scholar
[25]Thieme, H. R. (1979) Asymptotic estimates of the solutions of non-linear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math. 306, 94121.Google Scholar
[26]Thieme, H. R. & Zhao, X.-Q. (2001) A non-local delayed and diffusive predator-prey model. Non-Linear Anal. Real World Appl. 2, 145160.CrossRefGoogle Scholar
[27]Thieme, H. R. & Zhao, X.-Q. (2003) Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction–diffusion models. J. Diff. Eq. 195, 430470.CrossRefGoogle Scholar
[28]Weinberger, H. F. (1982) Long-time behavior of a class of biological models. SIAM, J. Math. Anal. 13, 353396.CrossRefGoogle Scholar
[29]Weinberger, H. F. (2002) On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511548.CrossRefGoogle Scholar
[30]Weinberger, H. F., Lewis, M. A. & Li, B. (2002) Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183218.CrossRefGoogle ScholarPubMed
[31]Weng, P. X., & Zhao, X.-Q. (2006) Spreading speed and traveling waves for a mulyi-type SIS epidemic model. J. Diff. Eq. 229, 270296.CrossRefGoogle Scholar
[32]Weng, P. X., Huang, H. X. & Wu, J. H. (2003) Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction. IMA J. Appl. Math. 68, 409439.CrossRefGoogle Scholar
[33]Wu, J. H. (1996) Theory and Applications of Partial Functional Differential Equations, Springer–Verlag. New York.CrossRefGoogle Scholar
[34]Wu, J. H. & Zou, X. F. (2001) Traveling wave fronts of reaction–diffusion systems with delay. J. Dyn. Diff. Eq. 13, 651687.CrossRefGoogle Scholar
[35]Xu, D. S. & Zhao, X.-Q. (2003) A non-local reaction-diifusion population model with age stage structure. Canadian J. Appl. Math. Q. 11, 303320.Google Scholar
[36]Zhao, X.-Q. (1996) Global attractivity and stability in some monotone discrete synamical systems. Bull. Austral. Math. Soc. 53, 305324.CrossRefGoogle Scholar
[37]Zhao, X.-Q. (2003) Dynamical Systems in Population Biology, Springer–Verlag. New York.CrossRefGoogle Scholar