Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-11T02:49:32.877Z Has data issue: false hasContentIssue false

The energy of Ginzburg–Landau vortices

Published online by Cambridge University Press:  16 April 2002

Y. N. OVCHINNIKOV
Affiliation:
Landau Institute, Moscow, Russia
I. M. SIGAL
Affiliation:
Department of Mathematics, University of Toronto, Toronto, ON M5S 3G3, Canada email: sigal@math.utoronto.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the Ginzburg–Landau equation in dimension two. We introduce a key notion of the vortex (interaction) energy. It is defined by minimizing the renormalized Ginzburg–Landau (free) energy functional over functions with a given set of zeros of given local indices. We find the asymptotic behaviour of the vortex energy as the inter-vortex distances grow. The leading term of the asymptotic expansion is the vortex self-energy while the next term is the classical Kirchhoff–Onsager Hamiltonian. To derive this expansion we use several novel techniques.

Type
Research Article
Copyright
2002 Cambridge University Press