Article contents
Nash equilibrium for a multiobjective control problem related to wastewater management
Published online by Cambridge University Press: 23 January 2009
Abstract
This paper is concerned with mathematical modelling in the management of a wastewater treatment system. The problem is formulated as looking for a Nash equilibrium of a multiobjective pointwise control problem of aparabolic equation. Existence of solution is proved and a first order optimality system is obtained. Moreover, a numerical method to solve this system is detailed and numerical results are shown in a realistic situation posed in the estuary of Vigo (Spain).
Keywords
- Type
- Research Article
- Information
- ESAIM: Control, Optimisation and Calculus of Variations , Volume 15 , Issue 1 , January 2009 , pp. 117 - 138
- Copyright
- © EDP Sciences, SMAI, 2008
References
Álvarez-Vázquez, L.J., Martínez, A., Rodríguez, C. and Vázquez-Méndez, M.E., Numerical convergence for a sewage disposal problem.
Appl. Math. Model.
25 (2001) 1015–1024.
Álvarez-Vázquez, L.J., Martínez, A., Rodríguez, C. and Vázquez-Méndez, M.E., Numerical optimization for the location of wastewater outfalls.
Comput. Optim. Appl.
22 (2002) 399–417.
CrossRef
Álvarez-Vázquez, L.J., Martínez, A., Rodríguez, C. and Vázquez-Méndez, M.E., Mathematical model for optimal control in wastewater discharges: the global performance.
C. R. Biologies
328 (2005) 327–336.
Álvarez-Vázquez, L.J., Martínez, A., Muñoz-Sola, R., Rodríguez, C. and Vázquez-Méndez, M.E., The water conveyance problem: Optimal purification of polluted waters.
Math. Models Meth. Appl. Sci.
15 (2005) 1393–1416.
A. Bermúdez, Numerical modelling of water pollution problems, in Environment, Economics and their Mathematical Models, J.I. Diaz and J.L. Lions Eds., Masson, Paris (1994).
Bermúdez, A., Rodríguez, C. and Vilar, M.A., Solving shallow water equations by a mixed implicit finite element method.
IMA J. Num. Anal.
11 (1991) 79–97.
CrossRef
Casas, E., Pontryagin's principle for state constrained boundary control problems of semilinear parabolic equations.
SIAM J. Control Optim.
35 (1997) 1297–1327.
CrossRef
R. Gibbons, A Primer in Game Theory. Pearson Higher Education (1992).
O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, in Translations of Mathematical Monographs
23, Amer. Math. Soc., Providence (1968).
J.L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux derivées partielles. Dunod, Paris (1968).
J.L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications. Dunod, Paris (1968).
Martínez, A., Rodríguez, C. and Vázquez-Méndez, M.E., Theoretical and numerical analysis of an optimal control problem related to wastewater treatment.
SIAM J. Control Optim.
38 (2000) 1534–1553.
CrossRef
Parra-Guevara, D. and Skiba, YN., Elements of the mathematical modeling in the control of pollutants emissions.
Ecol. Model.
167 (2003) 263–275.
CrossRef
O. Pironneau, Finite Element Methods for Fluids. J. Wiley & Sons, Chichester (1989).
Ramos, A.M., Glowinski, R. and Periaux, J., Nash equilibria for the multiobjetive control of linear partial differential equations.
J. Optim. Theory Appl.
112 (2002) 457–498.
CrossRef
E. Zeidler, Nonlinear Functional Analysis and its Applications. Springer-Verlag (1993).
- 11
- Cited by