Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-11T01:59:21.855Z Has data issue: false hasContentIssue false

A concentration inequality for interval maps with an indifferent fixed point

Published online by Cambridge University Press:  01 August 2009

J.-R. CHAZOTTES
Affiliation:
Centre de Physique Théorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France (email: chazottes@cpht.polytechnique.fr, collet@cpht.polytechnique.fr)
P. COLLET
Affiliation:
Centre de Physique Théorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France (email: chazottes@cpht.polytechnique.fr, collet@cpht.polytechnique.fr)
F. REDIG
Affiliation:
Mathematisch Instituut Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands (email: redig@math.leidenuniv.nl)
E. VERBITSKIY
Affiliation:
Philips Research, HTC 36 (M/S 2), 5656 AE Eindhoven, The Netherlands (email: evgeny.verbitskiy@philips.com)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a map of the unit interval with an indifferent fixed point, we prove an upper bound for the variance of all observables of n variables, K:[0,1]n→ℝ, which are separately Lipschitz. The proof is based on coupling and decay of correlation properties of the map. We also present applications of this inequality to the almost-sure central limit theorem, the kernel density estimation, the empirical measure and the periodogram.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

References

[1]Barbour, A. D., Gerrard, R. M. and Reinert, G.. Iterates of expanding maps. Probab. Theory Related Fields 116(2) (2000), 151180.CrossRefGoogle Scholar
[2]Brockwell, P.J. and Davis, R.A.. Time Series: Theory and Methods, 2nd edn. Springer, Berlin, 1991.CrossRefGoogle Scholar
[3]Chazottes, J.-R. and Collet, P.. Almost-sure central limit theorems and the Erdös-Rényi law for expanding maps of the interval. Ergod. Th. & Dynam. Sys. 25 (2005), 419441.CrossRefGoogle Scholar
[4]Chazottes, J.-R., Collet, P., Kuelske, C. and Redig, F.. Concentration inequalities for random fields via coupling. Probab. Theory Related Fields 137 (2007), 201225.CrossRefGoogle Scholar
[5]Chazottes, J.-R., Collet, P. and Schmitt, B.. Devroye inequality for a class of non-uniformly hyperbolic dynamical systems. Nonlinearity 18 (2005), 23232340.CrossRefGoogle Scholar
[6]Chazottes, J.-R., Collet, P. and Schmitt, B.. Statistical consequences of the Devroye inequality for processes. Applications to a class of non-uniformly hyperbolic dynamical systems. Nonlinearity 18 (2005), 23412364.CrossRefGoogle Scholar
[7]Chazottes, J.-R. and Gouëzel, S.. On almost-sure versions of classical limit theorems for dynamical systems. Probab. Theory Related Fields 138 (2007), 195234.CrossRefGoogle Scholar
[8]Collet, P.. Variance and exponential estimates via coupling. Bull. Braz. Math. Soc. 37 (2006), 461475.CrossRefGoogle Scholar
[9]Collet, P., Martínez, S. and Schmitt, B.. Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory Related Fields 123 (2002), 301322.CrossRefGoogle Scholar
[10]Dedecker, J. and Prieur, C.. Some unbounded functions of intermittent maps for which the central limit theorem holds. Preprint, 2007. http://arxiv.org/abs/0712.2726. Latin Amer. J. Probab. Math. Stat. to appear.Google Scholar
[11]Devroye, L. and Lugosi, G.. Combinatorial Methods in Density Estimation. Springer, New York, 2000.Google Scholar
[12]Dudley, R. M.. Real Analysis and Probability (Cambridge Studies in Advanced Mathematics, 74). Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original.CrossRefGoogle Scholar
[13]Hu, H.. Decay of correlations for piecewise smooth maps with indifferent fixed points. Ergod. Th. & Dynam. Sys. 24(2) (2004), 495524.CrossRefGoogle Scholar
[14]Ledoux, M.. The Concentration of Measure Phenomenon (Mathematical Surveys and Monographs, 89). American Mathematical Society, Providence, RI, 2001.Google Scholar
[15]Liverani, C.. Central limit theorem for deterministic systems. International Conference on Dynamical Systems (Montevideo, 1995) (Pitman Research Notes in Mathematics Series, 362). Longman, Harlow, 1996, pp. 5675.Google Scholar
[16]Massart, P.. Concentration inequalities and model selection. École d’été de Probab. de Saint-Flour XXXIII —2003 (Lecture Notes in Mathematics, 1896). Springer, Berlin, 2007.Google Scholar
[17]McDiarmid, C.. Concentration. Probabilistic methods for algorithmic discrete mathematics. Algorithms Combin. 16 (1998), 195248.CrossRefGoogle Scholar
[18]Melbourne, I. and Nicol, M.. Large deviations for nonuniformly hyperbolic systems. Trans. Amer. Math. Soc. 360(12) (2008), 66616676.CrossRefGoogle Scholar
[19]Rey-Bellet, L. and Young, L.-S.. Large deviations in nonuniformly hyperbolic dynamical systems. Ergod. Th. & Dynam. Sys. 28(2) (2008), 587612.CrossRefGoogle Scholar
[20]Talagrand, M.. Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math. Inst. Hautes Études Sci. 81 (1995), 73205; New concentration inequalities in product spaces. Inventiones Math. 126 (1996) 505–563; A new look at independence. Ann. Probab. 24 (1996) 1–34.CrossRefGoogle Scholar
[21]Young, L.-S.. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2) 147(3) (1998), 585650.CrossRefGoogle Scholar
[22]Young, L.-S.. Recurrence times and rates of mixing. Israel J. Math. 110 (1999), 153188.CrossRefGoogle Scholar