Article contents
Circle maps and
${C}^{\ast } $-algebras
Published online by Cambridge University Press: 28 August 2013
Abstract
We consider a construction of ${C}^{\ast } $-algebras from continuous piecewise monotone maps on the circle which generalizes the crossed product construction for homeomorphisms and more generally the construction of Renault, Deaconu and Anantharaman-Delaroche for local homeomorphisms. Assuming that the map is surjective and not locally injective we give necessary and sufficient conditions for the simplicity of the
${C}^{\ast } $-algebra and show that it is then a Kirchberg algebra. We provide tools for the calculation of the
$K$-theory groups and turn them into an algorithmic method for Markov maps.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press, 2013
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:14264:20160412051049915-0261:S0143385713000643_inline6.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:69050:20160412051049915-0261:S0143385713000643_inline7.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:36520:20160412051049915-0261:S0143385713000643_inline8.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:25845:20160412051049915-0261:S0143385713000643_inline9.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:40993:20160412051049915-0261:S0143385713000643_inline10.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:90719:20160412051049915-0261:S0143385713000643_inline11.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:65389:20160412051049915-0261:S0143385713000643_inline12.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:17939:20160412051049915-0261:S0143385713000643_inline13.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:94985:20160412051049915-0261:S0143385713000643_inline14.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:87553:20160412051049915-0261:S0143385713000643_inline15.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:65877:20160412051049915-0261:S0143385713000643_inline16.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:72009:20160412051049915-0261:S0143385713000643_inline17.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:89347:20160412051049915-0261:S0143385713000643_inline18.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:51454:20160412051049915-0261:S0143385713000643_inline19.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:76586:20160412051049915-0261:S0143385713000643_inline20.gif?pub-status=live)
- 1
- Cited by