Article contents
$C^{\ast }$-algebras of labelled graphs III—
$K$-theory computations
Published online by Cambridge University Press: 06 October 2015
Abstract
In this paper we give a formula for the $K$-theory of the
$C^{\ast }$-algebra of a weakly left-resolving labelled space. This is done by realizing the
$C^{\ast }$-algebra of a weakly left-resolving labelled space as the Cuntz–Pimsner algebra of a
$C^{\ast }$-correspondence. As a corollary, we obtain a gauge-invariant uniqueness theorem for the
$C^{\ast }$-algebra of any weakly left-resolving labelled space. In order to achieve this, we must modify the definition of the
$C^{\ast }$-algebra of a weakly left-resolving labelled space. We also establish strong connections between the various classes of
$C^{\ast }$-algebras that are associated with shift spaces and labelled graph algebras. Hence, by computing the
$K$-theory of a labelled graph algebra, we are providing a common framework for computing the
$K$-theory of graph algebras, ultragraph algebras, Exel–Laca algebras, Matsumoto algebras and the
$C^{\ast }$-algebras of Carlsen. We provide an inductive limit approach for computing the
$K$-groups of an important class of labelled graph algebras, and give examples.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press, 2015
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170228034353603-0322:S0143385715000620:S0143385715000620_inline16.gif?pub-status=live)
- 11
- Cited by