Hostname: page-component-7b9c58cd5d-9k27k Total loading time: 0 Render date: 2025-03-14T11:55:40.590Z Has data issue: false hasContentIssue false

Aperiodic substitution systems and their Bratteli diagrams

Published online by Cambridge University Press:  01 February 2009

S. BEZUGLYI
Affiliation:
Department of Mathematics, Institute for Low Temperature Physics, Kharkov 61103, Ukraine (email: bezuglyi@ilt.kharkov.ua)
J. KWIATKOWSKI
Affiliation:
Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Olsztyn 10561, Poland (email: jkwiat@mat.uni.torun.pl)
K. MEDYNETS
Affiliation:
Department of Mathematics, Institute for Low Temperature Physics, Kharkov 61103, Ukraine (email: medynets@ilt.kharkov.ua)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study aperiodic substitution dynamical systems arising from non-primitive substitutions. We prove that the Vershik homeomorphism φ of a stationary ordered Bratteli diagram is topologically conjugate to an aperiodic substitution system if and only if no restriction of φ to a minimal component is conjugate to an odometer. We also show that every aperiodic substitution system generated by a substitution with nesting property is conjugate to the Vershik map of a stationary ordered Bratteli diagram. It is proved that every aperiodic substitution system is recognizable. The classes of m-primitive substitutions and derivative substitutions associated with them are studied. We discuss also the notion of expansiveness for Cantor dynamical systems of finite rank.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

References

[1]Bezuglyi, S., Dooley, A. H. and Medynets, K.. The Rokhlin lemma for homeomorphisms of a Cantor set. Proc. Amer. Math. Soc. 133(10) (2005), 29572964.CrossRefGoogle Scholar
[2]Carlsen, T. and Eilers, S.. Augmenting dimension group invariants for substitution dynamics. Ergod. Th. & Dynam. Sys. 24(4) (2004), 10151039.CrossRefGoogle Scholar
[3]Carlsen, T. and Eilers, S.. Ordered k-groups associated to substitutional dynamics. J. Funct. Anal. 238(1) (2006), 99117.CrossRefGoogle Scholar
[4]Durand, F., Host, B. and Skau, B.. Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergod. Th. & Dynam. Sys. 19(4) (1999), 953993.CrossRefGoogle Scholar
[5]Downarowicz, T. and Maass, A.. Finite rank Bratteli–Vershik diagrams are expansive. Ergod. Th. & Dynam. Sys. 28(3) (2008), 739747.CrossRefGoogle Scholar
[6]Durand, F.. A characterization of substitutive sequences using return words. Discrete Math. 179 (1998), 89101.CrossRefGoogle Scholar
[7]Durand, F.. A theorem of Cobham for non-primitive substitutions. Acta Arith. 104(2) (2002), 225241.CrossRefGoogle Scholar
[8]Ferenczi, S.. Substitution dynamical systems on infinite alphabets (Substitutions sur un alphabet infini). Ann. Inst. Fourier (Grenoble) 56(7) (2006), 23152343.CrossRefGoogle Scholar
[9]Fogg, P. N.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794). Springer, Berlin, 2002.CrossRefGoogle Scholar
[10]Forrest, A. H.. K-groups associated with substitution minimal systems. Israel J. Math. 98 (1997), 101139.CrossRefGoogle Scholar
[11]Gjerde, R. and Johansen, Ø.. Bratteli–Vershik models for Cantor minimal systems: applications to Toeplitz flows. Ergod. Th. & Dynam. Sys. 20 (2000), 16871710.CrossRefGoogle Scholar
[12]Glasner, E.. Ergodic Theory via Joinings (Mathematical Surveys and Monographs, 101). American Mathematical Society, Providence, RI, 2003.CrossRefGoogle Scholar
[13]Giordano, T., Matui, H., Putnam, I. and Skau, C.. Orbit equivalence for Cantor minimal ℤ2-systems. J. Amer. Math. Soc. 21(3) (2008), 863892.CrossRefGoogle Scholar
[14]Giordano, T., Putnam, I. and Skau, C.. Topological orbit equivalence and C *-crossed products. J. Reine Angew. Math. 469 (1995), 51111.Google Scholar
[15]Giordano, T., Putnam, I. and Skau, C.. Full groups of Cantor minimal systems. Israel J. Math. 111 (1999), 285320.CrossRefGoogle Scholar
[16]Giordano, T., Putnam, I. and Skau, C.. Affable equivalence relations and orbit structure of Cantor dynamical systems. Ergod. Th. & Dynam. Sys. 24(2) (2004), 441475.CrossRefGoogle Scholar
[17]Glasner, E. and Weiss, B.. Weak orbit equivalence of Cantor minimal systems. Internat. J. Math. 6(4) (1995), 569579.CrossRefGoogle Scholar
[18]Host, B.. Valeurs propres des systèmes dynamiques definis par des substitutions de longueur variable. Ergod. Th. & Dynam. Sys. 6(4) (1986), 529540.CrossRefGoogle Scholar
[19]Herman, R. H., Putnam, I. and Skau, C.. Ordered Bratteli diagrams, dimension groups, and topological dynamics. Internat. J. Math. 3(6) (1992), 827864.CrossRefGoogle Scholar
[20]Kurka, P.. Topological and Symbolic Dynamics (Cours Spécialisés (Paris) 11). Société Mathématique de France, Paris, 2003.Google Scholar
[21]Medynets, K.. Cantor aperiodic systems and Bratteli diagrams. C. R. Math. Acad. Sci. Paris 342(1) (2006), 4346.CrossRefGoogle Scholar
[22]Mossé, B.. Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci. 99(2) (1992), 327334.CrossRefGoogle Scholar
[23]Mossé, B.. Reconnaissabilité des substitutions et complexité des suites automatiques. Bull. Soc. Math. France 124(2) (1996), 329346.CrossRefGoogle Scholar
[24]Queffelec, M.. Substitution Dynamical Systems – Spectral Analysis (Lecture Notes in Mathematics, 1294). Springer, Berlin, 1987.CrossRefGoogle Scholar
[25]Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, Berlin, 1982.CrossRefGoogle Scholar
[26]Yuasa, H.. On the topological orbit equivalence in a class of substitutional minimal systems. Tokyo J. Math. 25(2) (2002), 221240.CrossRefGoogle Scholar
[27]Yuasa, H.. Invariant measures for the subshifts arising from non-primitive substitutions. J. Anal. Math. 102 (2007), 143180.CrossRefGoogle Scholar