Published online by Cambridge University Press: 22 December 2014
Let $A$ be an abelian variety defined over a field
$k$. In this paper we define a descending filtration
$\{F^{r}\}_{r\geqslant 0}$ of the group
$\mathit{CH}_{0}(A)$ and prove that the successive quotients
$F^{r}/F^{r+1}\otimes \mathbb{Z}[1/r!]$ are isomorphic to the group
$(K(k;A,\dots ,A)/Sym)\otimes \mathbb{Z}[1/r!]$, where
$K(k;A,\dots ,A)$ is the Somekawa
$K$-group attached to
$r$-copies of the abelian variety
$A$. In the special case when
$k$ is a finite extension of
$\mathbb{Q}_{p}$ and
$A$ has split multiplicative reduction, we compute the kernel of the map
$\mathit{CH}_{0}(A)\otimes \mathbb{Z}[\frac{1}{2}]\rightarrow \text{Hom}(Br(A),\mathbb{Q}/\mathbb{Z})\otimes \mathbb{Z}[\frac{1}{2}]$, induced by the pairing
$\mathit{CH}_{0}(A)\times Br(A)\rightarrow \mathbb{Q}/\mathbb{Z}$.