Article contents
Central elements in affine mod p Hecke algebras via perverse
$\mathbb {F}_p$-sheaves
Published online by Cambridge University Press: 14 September 2021
Abstract
Let $G$ be a split connected reductive group over a finite field of characteristic
$p > 2$ such that
$G_\text {der}$ is absolutely almost simple. We give a geometric construction of perverse
$\mathbb {F}_p$-sheaves on the Iwahori affine flag variety of
$G$ which are central with respect to the convolution product. We deduce an explicit formula for an isomorphism from the spherical mod
$p$ Hecke algebra to the center of the Iwahori mod
$p$ Hecke algebra. We also give a formula for the central integral Bernstein elements in the Iwahori mod
$p$ Hecke algebra. To accomplish these goals we construct a nearby cycles functor for perverse
$\mathbb {F}_p$-sheaves and we use Frobenius splitting techniques to prove some properties of this functor. We also prove that certain equal characteristic analogues of local models of Shimura varieties are strongly
$F$-regular, and hence they are
$F$-rational and have pseudo-rational singularities.
- Type
- Research Article
- Information
- Copyright
- © 2021 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence
Footnotes
Current address: Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA; rcass@caltech.edu
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1544.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1545.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1547.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1548.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1550.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1551.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1552.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1553.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1554.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1555.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1556.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1558.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1559.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1560.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1561.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1562.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1563.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1564.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1565.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20211112083057346-0978:S0010437X2100751X:S0010437X2100751X_inline1566.png?pub-status=live)
- 2
- Cited by