Let
${{a}_{1}},\,.\,.\,.\,,\,{{a}_{9}}$ be non-zero integers and
$n$ any integer. Suppose that
${{a}_{1}}\,+\,.\,.\,.\,+\,{{a}_{9}}\,\equiv \,n$
$\left( \bmod \,2 \right)$ and
$\left( {{a}_{i}},\,{{a}_{i}} \right)\,=\,1$ for
$1\,\le \,i\,<\,j\le \,9$. In this paper we prove that
(i) if
${{a}_{j}}$ are not all of the same sign, then the cubic equation
${{a}_{1}}p_{1}^{3}\,+\,.\,.\,.\,+\,{{a}_{9}}p_{9}^{3}\,=\,n$ has prime solutions satisfying
${{p}_{j}}\,\ll \,{{\left| n \right|}^{{1}/{3}\;}}\,+\,\max {{\left\{ \left| {{a}_{j}} \right| \right\}}^{8+\varepsilon }}$;
(ii) if all
${{a}_{j}}$ are positive and
$n\,\gg \,\max {{\left\{ \left| {{a}_{j}} \right| \right\}}^{25+\varepsilon }}$ , then
${{a}_{1}}p_{1}^{3}\,+\,.\,.\,.\,+\,{{a}_{j}}p_{9}^{3}\,=\,n$ is soluble in primes
$Pj$.
These results improve our previous results with the bounds
$\max {{\left\{ \left| {{a}_{j}} \right| \right\}}^{14+\varepsilon }}$ and
$\max \,{{\left\{ \left| {{a}_{j}} \right| \right\}}^{43+\varepsilon }}$ in place of
$\max {{\left\{ \left| {{a}_{j}} \right| \right\}}^{8+\varepsilon }}$ and
$\max {{\left\{ \left| {{a}_{j}} \right| \right\}}^{25+\varepsilon }}$ above, respectively.