Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-04T15:32:54.008Z Has data issue: false hasContentIssue false

Value Sets of Sparse Polynomials

Published online by Cambridge University Press:  24 September 2019

Igor E. Shparlinski
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia Email: igor.shparlinski@unsw.edu.au
José Felipe Voloch
Affiliation:
School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand Email: felipe.voloch@canterbury.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We obtain a new lower bound on the size of the value set $\mathscr{V}(f)=f(\mathbb{F}_{p})$ of a sparse polynomial $f\in \mathbb{F}_{p}[X]$ over a finite field of $p$ elements when $p$ is prime. This bound is uniform with respect to the degree and depends on some natural arithmetic properties of the degrees of the monomial terms of $f$ and the number of these terms. Our result is stronger than those that can be extracted from the bounds on multiplicities of individual values in $\mathscr{V}(f)$.

MSC classification

Type
Article
Copyright
© Canadian Mathematical Society 2019

Footnotes

Author I. E. S. was supported by ARC Grants DP170100786 and DP180100201.

References

Bi, J., Cheng, Q., and Rojas, J. M., Sub-linear root detection, and new hardness results, for sparse polynomials over finite fields. SIAM J. Comput. 45(2016), 14331447. https://doi.org/10.1137/140990401Google Scholar
Birch, B. J. and Swinnerton-Dyer, H. P. F., Note on a problem of Chowla. Acta Arith. 5(1959), 417423. https://doi.org/10.4064/aa-5-4-417-423Google Scholar
Canetti, R., Friedlander, J. B., Konyagin, S. V., Larsen, M., Lieman, D., and Shparlinski, I. E., On the statistical properties of Diffie-Hellman distributions. Israel J. Math. 120(2000), 2346. https://doi.org/10.1007/s11856-000-1270-1Google Scholar
Carlitz, L., Lewis, D. J., Mills, W. H., and Strauss, E. G., Polynomials over finite fields with minimal value sets. Mathematika 8(1961), 121130. https://doi.org/10.1112/S0025579300002230Google Scholar
Cheng, Q., Gao, S., Rojas, J. M., and Wan, D., Sparse univariate polynomials with many roots over finite fields. Finite Fields Appl. 46(2017), 235246. https://doi.org/10.1016/j.ffa.2017.03.006Google Scholar
Kelley, A., Roots of sparse polynomials over a finite field. LMS J. Comput. Math. 19(2016), suppl. A, 196204. https://doi.org/10.1112/S1461157016000334Google Scholar
Kurlberg, P., Poisson spacing statistics for value sets of polynomials. Int. J. Number Theory 5(2009), 489513. https://doi.org/10.1142/S1793042109002237Google Scholar
Lorenzini, D., An invitation to arithmetic geometry. Graduate Studies in Mathematics, 9, American Mathematical Society, Providence, RI, 1996. https://doi.org/10.1090/gsm/009Google Scholar
Mills, W. H., Polynomials with minimal value sets. Pacific J. Math. 14(1964), 225241.Google Scholar
Mullen, G. and Zieve, M., Value sets of polynomials. In: Handbook of finite fields. CRC Press, Boca Raton, FL, 2013, pp. 232235. https://doi.org/10.1201/b15006Google Scholar
Stichtenoth, H., Algebraic function fields and codes. Graduate Texts in Mathematics, 254, Springer-Verlag, Berlin, 2009.Google Scholar
Stöhr, K. O. and Voloch, J. F., Weierstrass points and curves over finite fields. Proc. London Math. Soc. 52(1986), 119. https://doi.org/10.1112/plms/s3-52.1.1Google Scholar
Voloch, J. F., Diagonal equations over function fields. Bol. Soc. Brasil. Mat. 16(1985), 2939. https://doi.org/10.1007/BF02584799Google Scholar
Voloch, J. F., On the number of values taken by a polynomial over a finite field. Acta Arith. 52(1989), 197201. https://doi.org/10.4064/aa-52-2-197-201Google Scholar
Wan, D., Shiue, P. J.-S., and Chen, C. S., Value sets of polynomials over finite fields. Proc. Amer. Math. Soc. 119(1993), 711717. https://doi.org/10.2307/2160504Google Scholar
Zannier, U., On the number of terms of a composite polynomial. Acta Arith. 127(2007), 157168. https://doi.org/10.4064/aa127-2-5Google Scholar