Published online by Cambridge University Press: 20 November 2018
Let $b(t)$ be an
${{L}^{\infty }}$ function on
$\mathbf{R}$,
$\Omega ({y}')$ be an
${{H}^{1}}$ function on the unit sphere satisfying the mean zero property (1) and
${{Q}_{m}}(t)$ be a real polynomial on
$\mathbf{R}$ of degree
$m$ satisfying
${{Q}_{m}}(0)\,=\,0$. We prove that the singular integral operator
$${{T}_{Qm,}}b\left( f \right)\left( x \right)=p.v.\int\limits_{\mathbf{R}}^{n}{b\left( \left| y \right| \right)}\Omega \left( y \right){{\left| y \right|}^{-n}}f\left( x-{{Q}_{m}}\left( \left| y \right| \right){y}' \right)\,\,dy$$
is bounded in ${{L}^{p}}({{\mathbf{R}}^{n}})$ for
$1<p<\infty $, and the bound is independent of the coefficients of
${{Q}_{m}}(t)$.