No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
For ${{C}^{*}}$-algebras
$\mathcal{A}$ of real rank zero, we describe linear maps
$\phi $ on
$\mathcal{A}$ that are surjective up to ideals
$\mathcal{J}$, and
$\text{ }\pi \text{ (}A\text{)}$ is invertible in
$\mathcal{A}/\mathcal{J}$ if and only if
$\text{ }\pi \text{ (}\phi (A))$ is invertible in
$\mathcal{A}/\mathcal{J}$, where
$A\,\in \,\mathcal{A}$ and
$\text{ }\pi \text{ }\text{:}\mathcal{A}\to \mathcal{A}\text{/}\mathcal{J}$ is the quotient map. We also consider similar linear maps preserving zero products on the Calkin algebra.