Published online by Cambridge University Press: 20 November 2018
Assume that $\Omega$ is a Hartogs domain in
${{\mathbb{C}}^{1+n}}$, defined as
$\Omega =\left\{ \left( z,w \right)\,\in \,{{\mathbb{C}}^{1+n}}\,:\left| z \right|\,<\,\mu \left( w \right),w\,\in H \right\}$, where
$H$ is an open set in
${{\mathbb{C}}^{n}}$ and
$\mu$ is a continuous function with positive values in
$H$ such that –ln
$\mu$ is a strongly plurisubharmonic function in
$H$. Let
${{\Omega }_{w}}=\Omega \cap \left( \mathbb{C}\times \left\{ w \right\} \right)$. For a given set
$E$ contained in
$H$ of the type
${{G}_{\delta }}$ we construct a holomorphic function
$f\in \mathbb{O}\left( \Omega \right)$ such that
$$E=\left\{ w\in {{\mathbb{C}}^{n}}:\int\limits_{{{\Omega }_{w}}}{{{\left| f\left( \cdot ,w \right) \right|}^{2}}d{{\mathfrak{L}}^{2}}=\infty } \right\}.$$