No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
We give a geometric proof of classical results that characterize Pisot numbers as algebraic $\text{ }\lambda \,>1$ for which there is
$x\ne 0$ with
$\text{ }\lambda {{\text{ }}^{n}}x\to 0\left( \,\bmod \,\,1 \right)$ and identify such
$x$ as members of
$\mathbb{Z}\left[ \text{ }\lambda {{\text{ }}^{-1}} \right]\cdot$
$\mathbb{Z}{{\left[ \text{ }\!\!\lambda\!\!\text{ } \right]}^{*}}$ where
$\mathbb{Z}{{\left[ \text{ }\!\!\lambda\!\!\text{ } \right]}^{*}}$ is the dual module of
$\mathbb{Z}\left[ \text{ }\!\!\lambda\!\!\text{ } \right]$.