Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-06T13:56:48.205Z Has data issue: false hasContentIssue false

Corona and Wolff theorems for the multiplier algebra of Dirichlet–Morrey spaces

Published online by Cambridge University Press:  13 January 2022

Lian Hu
Affiliation:
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, P.R. China e-mail: 201921210220@std.uestc.edu.cn 201921210221@std.uestc.edu.cn
Songxiao Li*
Affiliation:
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, P.R. China e-mail: 201921210220@std.uestc.edu.cn 201921210221@std.uestc.edu.cn
Rong Yang
Affiliation:
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan, P.R. China e-mail: 201921210220@std.uestc.edu.cn 201921210221@std.uestc.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

For $0<\lambda ,p<1$ , the Dirichlet–Morrey space $\mathcal {D}_p^{\lambda } $ is the space of all analytic function on the unit disc such that the measure $ |f'(z)|^2(1-|z|^2)^pdA(z)$ is a $p\lambda $ -Carleson measure. In this paper, we show that the corona theorem and the Wolff theorem hold for the multiplier algebra of Dirichlet–Morrey spaces.

Type
Article
Copyright
© Canadian Mathematical Society, 2022

1 Introduction

Let ${\mathbb D} $ and $\partial {\mathbb D}$ be the open unit disc and the unit circle in the complex plane, respectively. Denote by $H({\mathbb D})$ the space of all analytic functions on ${\mathbb D}$ . For any interval $I\subset \partial {\mathbb D}$ , let

$$ \begin{align*}S(I)=\{ z=re^{i\theta}\in {\mathbb D}:1-|I|\leq r<1, e^{i\theta}\in I \}\end{align*} $$

be the Carleson box based on I, where $|I|$ is the normalized arc length of I. Let $0<\alpha <\infty $ and $\mu $ be a positive Borel measure on ${\mathbb D}$ . We say that $\mu $ is an $\alpha $ -Carleson measure (see [Reference Pau and Zhao19]) if

$$ \begin{align*}\|\mu\|_{\alpha}=\sup_{I\subset \partial{\mathbb D}}{ \mu(S(I)) \over |I|^\alpha }< \infty.\end{align*} $$

$\mu $ is the classical Carleson measure when $\alpha =1$ .

For $0<p<\infty $ , the Hardy space $H^p$ is the set of all $f\in H(\mathbb {D})$ with

$$ \begin{align*}\|f\|^p_{H^p}= \sup_{0<r<1}\frac{1}{2\pi}\int_0^{2\pi}|f(re^{i\theta})|^pd\theta <\infty.\end{align*} $$

Let $H^\infty $ denote the space of all bounded analytic functions with the supremum norm $\|f\|_{H^{\infty }}=\sup _{z\in {\mathbb D}}|f(z)|.$ For $0<p<\infty $ , the weighted Dirichlet space $\mathcal {D}_p$ is the space consisting of all $f\in H({\mathbb D})$ such that

$$ \begin{align*}\|f\|^2_{\mathcal{D}_p}=|f(0)|^2+ \int_{{\mathbb D}}|f'(z)|^2(1-|z|^2)^{p} dA(z) <\infty,\end{align*} $$

where $dA(z)={1\over \pi }dxdy$ is the normalized Lebesgue area measure in ${\mathbb D}$ . Clearly, $\mathcal {D}_1$ is the classical Hardy space $H^2$ , and $\mathcal {D}_0$ is the classical Dirichlet space $\mathcal {D}$ .

Let $K:\lbrack 0,\infty )\to \lbrack 0,\infty )$ be a nondecreasing function and not identically zero. The space $Q_K$ consists of those functions $f\in H({\mathbb D})$ such that (see, e.g., [Reference Essén and Wulan7, Reference Wulan and Zhu25])

$$ \begin{align*}\|f\|^2_{Q_K}=|f(0)|^2+\sup_{a\in {\mathbb D}} \int_{{\mathbb D}} |f'(z)|^2K(g(z,a))dA(z) <\infty,\end{align*} $$

where $g(z,a)=-\log |\varphi _{a}(z)|$ is the Green function at a and $\varphi _a(z)={a-z \over 1-\bar {a}z}$ is the Möbius map that interchanges points $0$ and a. When $K(t)=t^p, 0<p<\infty $ , $Q_K$ is the $Q_p$ space (see, e.g., [Reference Xiao27]). For the case $p=1$ , $Q_1$ coincides with $BMOA$ , the class of holomorphic functions of bounded mean oscillation on ${\mathbb D}$ (see [Reference Girela10]), meanwhile for $p>1$ , $Q_p$ is the Bloch space.

Let $0\leq \lambda ,p \leq 1$ . Galanopoulos, Merch $\acute {{\textrm {a}}}$ n, and Siskakis [Reference Galanopoulos, Merchán and Siskakis8] defined the Dirichlet–Morrey space $\mathcal {D}_p^{\lambda }$ , which consists of all functions $f\in \mathcal {D}_p$ such that

$$ \begin{align*}\|f\|_{\mathcal{D}_p^{\lambda}}=|f(0)|+\sup_{a\in {\mathbb D}}(1-|a|^2)^{p(1-\lambda)\over 2}\|f\circ\varphi_{a}-f(a)\|_{\mathcal{D}_p}<\infty.\end{align*} $$

By a simple calculation, we see that

$$ \begin{align*}\|f\|_{\mathcal{D}_p^{\lambda}}^2\approx \sup_{a\in {\mathbb D}}(1-|a|^2)^{p(1-\lambda)}\int_{{\mathbb D}}|f'(z)|^2(1-|\varphi_a(z)|^2)^pdA(z).\end{align*} $$

It is easy to check that $\mathcal {D}_1^{\lambda }=\mathcal {L}^{2,\lambda }$ , the Morrey space (see [Reference Li, Liu and Lou13, Reference Liu and Lou14, Reference Wu and Xie23, Reference Wulan and Zhou24]). Moreover, $\mathcal {D}_p^{1}=Q_p,\mathcal {D}_p^{0}=\mathcal {D}_p$ , and

$$ \begin{align*}Q_p\subset \mathcal{D}_p^{\lambda}\subset \mathcal{D}_p,\,\,\,\,\, 0<\lambda<1 .\end{align*} $$

Let X be a Banach space of analytic functions on ${\mathbb D} $ and $ M(X)$ be the algebra of pointwise multipliers of $X $ , that is,

$$ \begin{align*}M(X)=\{ g\in H({\mathbb D}):fg\in X~ {\textrm{for ~all}}~ f\in X\}.\end{align*} $$

In this paper, we investigate the corona problem for $M(\mathcal {D}^\lambda _p) $ when $0<\lambda ,p<1$ . This problem can be stated as follows.

The $M(\mathcal {D}^\lambda _p) $ corona problem. Let $0<\lambda ,p<1$ , and let $g_1,g_2,\ldots ,g_n\in M(\mathcal {D}_p^{\lambda })$ . What are the sufficient and necessary conditions on these functions such that there exist $ f_1,f_2,\ldots ,f_n\in M(\mathcal {D}_p^{\lambda })$ such that

$$ \begin{align*}g_1f_1+g_2f_2+\cdots+g_nf_n=1?\end{align*} $$

The corona theorem holds for $H^\infty $ by a famous result of Carleson (see [Reference Carleson6]). In [Reference Nicolau and Xiao15], Nicolau and Xiao gave the corona theorem on spaces $H^\infty \cap Q_p$ , which has been extended to $Q_p$ space by Xiao in [Reference Xiao26]. In addition, the same results on $ M(Q_p)$ and $H^\infty \cap Q_K$ were established by Pau in [Reference Pau16, Reference Pau17], respectively. In [Reference Li and Wulan12], Li and Wulan also showed that the corona theorem holds for $M(Q_K)$ . See [Reference Bao, Lou, Qian and Wulan4, Reference Treil21, Reference Trent22] and the references therein for more results of the corona theorem.

In this paper, we first show that the corona theorem holds for $M(\mathcal {D}^\lambda _p) $ when ${0<\lambda},{p<1}$ , that is, the unit disc is dense in the maximal ideal space of $M(\mathcal {D}^\lambda _p) $ . This can be reformulated in the following way.

Theorem 1 Let $0<\lambda ,p<1$ , and let $g_1,g_2,\ldots ,g_n\in M(\mathcal {D}_p^{\lambda })$ with

(1) $$ \begin{align} \inf_{z\in {\mathbb D}}\sum_{j=1}^{n}|g_j(z)|=\delta>0. \end{align} $$

Then there exist $ f_1,f_2,\ldots ,f_n\in M(\mathcal {D}_p^{\lambda })$ such that

$$ \begin{align*}g_1f_1+g_2f_2+\cdots+g_nf_n=1.\end{align*} $$

Banjade and Trent showed that the Wolff theorem holds for the multipliers of the Dirichlet space and weighted Dirichlet spaces in [Reference Banjade and Trent2, Reference Banjade and Trent3], respectively. Banjade also gave the Wolff theorem on spaces $H^\infty \cap Q_p$ and $M(Q_p)$ in [Reference Banjade1]. In [Reference Li and Wulan12], Li and Wulan showed that the Wolff theorem holds for the space $M(Q_K)$ . Motivated by these results, we investigate the Wolff theorem on the space $M(\mathcal {D}_p^{\lambda })$ . The second main result can be reformulated in the following way.

Theorem 2 Let $0<\lambda ,p<1$ , and let $g,g_1,g_2,\ldots ,g_n\in M(\mathcal {D}_p^{\lambda })$ with

(2) $$ \begin{align} \sum_{j=1}^{n}|g_j(z)|^2\ge|g(z)|^2,\,\,\,\,z\in{\mathbb D}. \end{align} $$

Then there exist $ f_1,f_2,\ldots ,f_n\in M(\mathcal {D}_p^{\lambda })$ such that

$$ \begin{align*}g_1f_1+g_2f_2+\cdots+g_nf_n=g^3.\end{align*} $$

The paper is organized as follows. In Section 2, we give some auxiliary properties, which will be used in the proofs of Theorems 1 and 2. In Section 3, we give a detail proof for Theorem 1. In Section 4, we give a proof for Theorem 2.

In this paper, we write $F\approx G$ if $F\lesssim G \lesssim F$ , where $G \lesssim F$ means that there exists a nonnegative constant C such that $ G\le CF$ .

2 Some auxiliary properties

In this section, we state some lemmas that are useful for the proof of the corona theorem on spaces $ M(\mathcal {D}^\lambda _p)$ .

Lemma 1 [Reference Galanopoulos, Merchán and Siskakis8, Propositions 2.1 and 2.2]

Let $0<\lambda ,p<1$ , $f\in H({\mathbb D})$ . Then the following statements hold:

  1. (a) f belongs to $\mathcal {D}_p^{\lambda }$ if and only if

    $$ \begin{align*}\sup_{I\subset \partial{\mathbb D}} {1\over |I|^{p\lambda }}\int_{S(I)}|f'(z)|^2(1-|z|^2)^pdA(z) <\infty.\end{align*} $$
  2. (b) If $f\in \mathcal {D}_p^{\lambda }$ , then

    $$ \begin{align*}|f(z)|\lesssim{\|f\|_{\mathcal{D}_p^{\lambda}} \over (1-|z|^2)^{{p\over 2}(1-\lambda)}}.\end{align*} $$

Lemma 2 [Reference Zhu28, Lemma 3.10]

Let $z\in {\mathbb D}$ , $\alpha>-1$ , and $\beta>0$ . Then

$$ \begin{align*}\int_{{\mathbb D}}{ (1-|w|^2)^\alpha \over |1-z\bar{w}|^{2+\alpha+\beta}}dA(w)\approx(1-|z|^2)^{-\beta}.\end{align*} $$

Lemma 3 [Reference Pau16, Lemma 2.2]

Let $0<p<1$ . If $ |f(z)|^2(1-|z|^2)^pdA(z)$ is a p-Carleson measure, then $ |f(z)|dA(z)$ is a Carleson measure.

Lemma 4 Let $0<\lambda ,p<1$ such that

$$ \begin{align*}T_f(z)=\int_{{\mathbb D}}{f(z)\over |1-\bar{w}z|^2}dA(w)\end{align*} $$

has sense and it defines an analytic function. If $ |f(z)|^2(1-|z|^2)^pdA(z)$ is a $p\lambda $ -Carleson measure, then $ |T_f(z)|^2(1-|z|^2)^pdA(z)$ is also a $p\lambda $ -Carleson measure.

Proof For the Carleson box $S(I)$ , it is obvious that

$$ \begin{align*} &\int_{S(I)}|T_f(z)|^2(1-|z|^2)^pdA(z)\\ &\quad\lesssim \int_{S(I)}\left( \int_{S(2I)}{ |f(w)| \over |1-\bar{w}z|^2 }dA(w) \right)^2(1-|z|^2)^pdA(z)\\ &\qquad{}+\int_{S(I)}\left( \int_{{\mathbb D} \backslash S(2I)}{ |f(w)| \over |1-\bar{w}z|^2 }dA(w) \right)^2(1-|z|^2)^pdA(z)=I_1+I_2. \end{align*} $$

From Lemma 7.2.2 in [Reference Xiao27], we have

$$ \begin{align*}I_1\lesssim\int_{S(2I)}|f(z)|^2(1-|z|^2)^pdA(z)\lesssim|I|^{p\lambda}.\end{align*} $$

Applying the Cauchy–Schwarz inequality, we obtain that

$$ \begin{align*} \int_{S(I)}{|f(z)|}dA(z) &\le \left(\int_{S(I)} { |f(z)|^2(1-|z|^2)^p } dA(z) \right)^{1/2}\left( \int_{S(I)}{ (1-|z|^2)^{-p} }dA(z) \right)^{1/2}\\ &\lesssim |I|^{p\lambda\over 2}|I|^{1-{p\over 2}}=|I|^{1+{p\lambda\over 2}-{p\over 2}}. \end{align*} $$

Therefore, $ |f(z)|dA(z)$ is a $1+{p\lambda \over 2}-{p\over 2} $ -Carleson measure. This deduces that

$$ \begin{align*} I_2 &\lesssim \int_{S(I)}\left( \sum_{n=1}^{\infty}\int_{S(2^{n+1}I)\backslash S(2^nI)}{ |f(w)| \over |1-\bar{w}z|^2 }dA(w) \right)^2(1-|z|^2)^pdA(z)\\ &\lesssim\int_{S(I)}\left( \sum_{n=1}^{\infty} { 2^{n+1}|I|^{1+{p\lambda\over 2}-{p\over 2}} \over (2^n|I|)^2 }\right)^2(1-|z|^2)^pdA(z)\lesssim|I|^{p\lambda}. \end{align*} $$

So $ |T_f(z)|^2(1-|z|^2)^pdA(z)$ is a $p\lambda $ -Carleson measure. The proof is complete.▪

Let $f\in H({\mathbb D})$ . The Volterra integral operator $J_f$ , which was first introduced by Pommerenke in [Reference Pommerenke20], is defined as

$$ \begin{align*}J_f(g)(z)=\int_0^zg(\zeta)f'(\zeta)d\zeta, \,\,z\in {\mathbb D}, g\in H({\mathbb D}).\end{align*} $$

Its related operator $I_f$ is defined by

$$ \begin{align*}I_f(g)(z)=\int_0^zg'(\zeta)f(\zeta)d\zeta, \,\,z\in {\mathbb D}, g\in H({\mathbb D}).\end{align*} $$

It is clear that $M_f(g)(z)=J_f(g)(z)+I_f(g)(z)+f(0)g(0)$ , where $M_f(g)(z)=f(z)g(z)$ , called the multiplication operator.

Lemma 5 Let $0<\lambda ,p<1$ . Then $f\in M(\mathcal {D}_p^{\lambda })$ if and only if $f\in H^\infty $ and the measure $d\mu (z)=|f'(z)|^2|g(z)|^2(1-|z|^2)^pdA(z)$ is a $p\lambda $ -Carleson measure for any $g\in \mathcal {D}_p^{\lambda }$ .

Proof Suppose first that $f\in M(\mathcal {D}_p^{\lambda })$ . For any $g\in \mathcal {D}_p^{\lambda }$ , we have $M_f(g)\in \mathcal {D}_p^{\lambda }$ . Corollary 3.1 in [Reference Galanopoulos, Merchán and Siskakis8] gives that $f\in H^\infty $ , which implies that $I_f(g)\in \mathcal {D}_p^{\lambda }$ . Therefore, $J_f(g)\in \mathcal {D}_p^{\lambda }$ , that is, the measure $d\mu (z)=|f'(z)|^2|g(z)|^2(1-|z|^2)^pdA(z)$ is a $p\lambda $ -Carleson measure.

Conversely, suppose that $f\in H^\infty $ and the measure $\mu $ is a $p\lambda $ -Carleson measure. For any $g\in \mathcal {D}_p^{\lambda }$ , using the norm of $\mathcal {D}_p^{\lambda }$ , we can easily obtain the desired result.▪

Let $0<\lambda ,p<1$ , $f\in L^2(\partial {\mathbb D})$ . We say that $f\in \mathcal {D}_p^{\lambda }(\partial {\mathbb D}) $ if

$$ \begin{align*}\|f\|_{\mathcal{D}_p^{\lambda}(\partial{\mathbb D})}=\left( \sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{I}\int_{I}{ |f(\varsigma)-f(\eta)|^2 \over |\varsigma-\eta|^{2-p} }|d\varsigma||d\eta| \right)^{1/2}<\infty.\end{align*} $$

A function of $H^2$ belongs to $\mathcal {D}_p^{\lambda }$ if and only if its boundary values belong to $ \mathcal {D}_p^{\lambda }(\partial {\mathbb D}) $ (see [Reference Galanopoulos, Merchán and Siskakis8, Theorem 2.1]).

Lemma 6 [Reference Bao and Pau5, Lemma 2.2]

Let $0<p<1$ and $f\in L^2(\partial {\mathbb D})$ . Let $F\in \mathcal {C}^1({\mathbb D})$ such that $\lim _{r\to 1^-}F(re^{i\theta })=f(e^{i\theta })$ for almost everywhere $ e^{i\theta }\in \partial {\mathbb D}$ . For any interval $I\subset \partial {\mathbb D}$ ,

$$ \begin{align*}\int_{I}\int_{I}{|f(e^{it})-f(e^{is})|^2 \over| e^{it}-e^{is}|^{2-p} }dtds\lesssim\int_{S(3I)}|\nabla F(z)|^2(1-|z|^2)^{p}dA(z).\end{align*} $$

Using Lemma 6, we get the following result.

Corollary 1 Let $0<\lambda ,p<1$ and $f\in L^2(\partial {\mathbb D})$ . Let $F\in \mathcal {C}^1({\mathbb D})$ such that $\lim _{r\to 1^-}F(re^{i\theta })=f(e^{i\theta })$ for almost everywhere $ e^{i\theta }\in \partial {\mathbb D}$ . If $ |\nabla F(z)|^2(1-|z|^2)^pdA(z)$ is a $p\lambda $ -Carleson measure, then $ f\in \mathcal {D}_p^{\lambda }(\partial {\mathbb D})$ .

For $z=x+i y$ , define

$$ \begin{align*}\bar{\partial}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) ,\quad \partial=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right). \end{align*} $$

Let f be $\mathcal {C}^{1}$ and bounded on ${\mathbb D}$ . Then the $\bar {\partial }$ -equation $\bar {\partial } g=f$ has a standard solution

$$ \begin{align*}g(z)=\frac{1}{\pi} \int_{{\mathbb D}} \frac{f(w)}{z-w} d A(w) \end{align*} $$

on ${\mathbb D}$ . In this paper, Jones’ solution of the $\bar {\partial }$ -equation is suitable for our purpose, i.e., the following lemma (see [Reference Jones11, Reference Xiao26]).

Lemma 7 Let $ \mu $ be a Carleson measure on ${\mathbb D}$ . If for $z \in {\mathbb D} \cup \partial {\mathbb D}$ and $\varsigma \in {\mathbb D}$ ,

$$ \begin{align*}K_\mu(z,\varsigma)={ 2i(1-|\varsigma|^2)\over\pi(1-\bar{\varsigma}z)(z-\varsigma) }\exp\left\{\int_{ |w|\ge |\varsigma|} \left ({1+\bar{w}\varsigma \over 1-\bar{w}\varsigma }- {1+\bar{w}z \over 1-\bar{w}z } \right){d\mu(w)\over \|\mu\|_1}\right\}, \end{align*} $$

then

$$ \begin{align*}G(z)=\int_{{\mathbb D}}K_\mu(z,\varsigma)d\mu(\varsigma)\end{align*} $$

satisfies $\bar {\partial }G=\mu $ . Moreover, if $z \in \partial {\mathbb D}$ , then the above integral converges absolutely and obeys

$$ \begin{align*}\int_{{\mathbb D}}|K_\mu(e^{i\theta},\varsigma)|d\mu(\varsigma) \le C\|\mu\|_1,\end{align*} $$

and hence $G\in L^\infty (\partial {\mathbb D})$ and $\|G\|_{L^\infty (\partial {\mathbb D})}\le C\|\mu \|_1.$

Thus, if $|g(z)|dA(z)$ is a Carleson measure, then the equation $\bar {\partial }G=g $ has a solution $G\in L^\infty (\partial {\mathbb D})$ .

3 Proof of Theorem 1

Proof of Theorem 1

Let $g_1,g_2,\ldots ,g_n\in M(\mathcal {D}_p^{\lambda })$ such that (1) holds. Without loss of generality, we suppose that $\|g_j\|_{H^\infty }\le 1,j=1,2,\ldots ,n$ . Consider the equation

$$ \begin{align*}\varPhi_1g_1+\varPhi_2g_2+\cdots+\varPhi_ng_n=1\end{align*} $$

and its nonanalytic solutions

$$ \begin{align*}\varPhi_j(z)={ \bar{g}_j(z) \over \sum_{k=1}^n|g_k(z)|^2 },\,\,\,\,\,\,j=1,2,\ldots,n.\end{align*} $$

For $ 1\le k,j\le n$ , we assume that the $\bar {\partial }$ -equation

$$ \begin{align*}\bar{\partial}b_{j,k}=\varPhi_j\bar{\partial}\varPhi_k\end{align*} $$

has solution $b_{j,k}$ such that $b_{j,k} f \in \mathcal {D}_p^{\lambda }(\partial {\mathbb D})$ for every $f\in \mathcal {D}_p^{\lambda }$ . By a simple calculation, we see that

$$ \begin{align*}f_j=\varPhi_j+\sum_{k=1}^n(b_{j,k}-b_{k,j})g_k,\,\,\,\,j=1,2,\ldots,n,\end{align*} $$

satisfy $\sum _{j=1}^ng_jf_j=\sum _{j=1}^ng_j\varPhi _j=1$ .▪

Since

$$ \begin{align*}{\partial f_j \over \partial\bar{z}}={ \partial \varPhi_j\over\partial\bar{z} }+\sum_{k=1}^ng_k\bigg(\varPhi_j{ \partial \varPhi_k\over\partial\bar{z} }-\varPhi_k{ \partial \varPhi_j\over\partial\bar{z} }\bigg)=0,\end{align*} $$

we have $f_j\in H({\mathbb D})$ . By (1), we have that (see also [Reference Pau16])

$$ \begin{align*}|\varPhi_j(z)|\le\delta^{-1} ~{\textrm{and}}~|\nabla\varPhi_j|^2 \lesssim\delta^{-3}\sum_{k=1}^n|g^{\prime}_k|^2.\end{align*} $$

To obtain that $ f_j\in M(\mathcal {D}_p^{\lambda })$ , we need to show that $ ff_j\in \mathcal {D}_p^{\lambda }$ for any $ f\in \mathcal {D}_p^{\lambda }$ . Applying Lemmas 1 and 5, we get

$$ \begin{align*} &\sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|\nabla\varPhi_j(z)f(z)|^2(1-|z|^2)^pdA(z)\\ &\quad\lesssim \sup_{I\subset \partial{\mathbb D}}\sum_{k=1}^n{1\over |I|^{p\lambda}}\int_{S(I)}|f(z)g^{\prime}_k(z)|^2(1-|z|^2)^pdA(z)<\infty. \end{align*} $$

Since $|\varPhi _j(z)|\le \delta ^{-1}$ , we obtain

$$ \begin{align*} &\sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|\varPhi_j(z)\nabla f(z)|^2(1-|z|^2)^pdA(z)\\ &\quad\lesssim \sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|f'(z)|^2(1-|z|^2)^pdA(z)<\infty. \end{align*} $$

Therefore,

$$ \begin{align*} &\sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|\nabla(\varPhi_jf)(z)|^2(1-|z|^2)^pdA(z)\\ &\quad\lesssim \sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}(|\nabla\varPhi_j(z)f(z)|^2+|\varPhi_j(z)\nabla f(z)|^2)(1-|z|^2)^pdA(z)<\infty, \end{align*} $$

which implies that $\varPhi _j f \in \mathcal {D}_p^{\lambda }$ . Since $ g_k\in M(\mathcal {D}_p^{\lambda })$ , $b_{j,k}f\in \mathcal {D}_p^{\lambda }, 1\le j,k\le n$ , we obtain that

$$ \begin{align*}\sum_{j=1}^n(b_{j,k}-b_{k,j})g_kf\in\mathcal{D}_p^{\lambda}.\end{align*} $$

This implies that

$$ \begin{align*}f_jf=\varPhi_jf+\sum_{k=1}^n(b_{j,k}-b_{k,j})g_kf \in\mathcal{D}_p^{\lambda}.\end{align*} $$

To finish the proof, we only need to show that there exists a $ b_{j,k}$ such that $\bar {\partial }b_{j,k}=\varPhi _j\bar {\partial }\varPhi _k$ , where $b_{j,k} f \in \mathcal {D}_p^{\lambda }(\partial {\mathbb D})$ for every $f\in \mathcal {D}_p^{\lambda }$ . Consider the $\bar {\partial }$ -equation $ \bar {\partial }u=G$ , where $G=\varPhi _j\bar {\partial }\varPhi _k$ . Applying (1), we get that

(3) $$ \begin{align} |G(z)|^2\lesssim \delta^{-6}\left(\sum_{k=1}^n|g^{\prime}_k(z)|\right)^2. \end{align} $$

Since $g_k\in M(\mathcal {D}_p^{\lambda })\subset Q_p $ (see Corollary 3.1 in [Reference Galanopoulos, Merchán and Siskakis8]), then $ |g^{\prime }_k(z)|^2(1-|z|^2)^pdA(z)$ is a p-Carleson measure. So, $|G(z)|^2(1-|z|^2)^pdA(z) $ is also a p-Carleson measure. Using Lemma 3, we have that $|G(z)|dA(z) $ is a Carleson measure. So, by Lemma 7, we get Jones’ solution u of the $\bar {\partial } $ problem $\bar {\partial }u=G$ . Moreover, u has the boundary values in $L^\infty (\partial {\mathbb D})$ . Let

$$ \begin{align*} v(z)&={2i\over \pi}\int_{{\mathbb D}}{ 1-|\varsigma|^2 \over |1-\bar{\varsigma}z|^2 }\\ &\cdot\exp\left( \int_{ |w|\ge |\varsigma|} \left({1+\bar{w}\varsigma \over 1-\bar{w}\varsigma }- {1+\bar{w}z \over 1-\bar{w}z } \right)|G(w)|dA(w) \right)G(\varsigma)dA(\varsigma). \end{align*} $$

From the proof of Theorem 3.1 of [Reference Nicolau and Xiao15], we have that v has the same boundary values as $zu$ and

(4) $$ \begin{align} |\nabla v(z)|\lesssim \int_{{\mathbb D}} { |G(w)| \over |1-\bar{w}z |^2 }dA(w). \end{align} $$

Since $|G(z)|dA(z) $ is a Carleson measure, then $ v\in L^\infty ({\mathbb D})$ from [Reference Jones11].

Now, we show that $vf\in \mathcal {D}_p^{\lambda }(\partial {\mathbb D})$ for every $f\in \mathcal {D}_p^{\lambda }$ . For this purpose, we need to prove that for any $f\in \mathcal {D}_p^{\lambda }$ ,

$$ \begin{align*}|\nabla(vf)(z)|^2(1-|z|^2)^pdA(z)\end{align*} $$

is a $p\lambda $ -Carleson measure by Corollary 1.

Since $f\in \mathcal {D}_p^{\lambda }$ and $ v\in L^\infty ({\mathbb D})$ , we see that $ |v(z)|^2|\nabla f(z)|^2(1-|z|^2)^pdA(z)$ is a $p\lambda $ -Carleson measure. Then it remains to verify that $ |\nabla v(z)|^2| f(z)|^2(1-|z|^2)^pdA(z)$ is also a $p\lambda $ -Carleson measure. By inequalities (3) and (4), we obtain that

$$ \begin{align*} &\sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|f(z)\nabla v(z)|^2(1-|z|^2)^pdA(z)\\ &\quad\lesssim \sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|f(z)|^2\left(\int_{{\mathbb D}}{ |G(w)| \over |1-\bar{w}z|^2 }dA(w) \right)^2(1-|z|^2)^pdA(z)\\ &\quad\lesssim \sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|f(z)|^2\left( \sum_{k=1}^n\int_{{\mathbb D}}{ |g^{\prime}_k(w)| \over |1-\bar{w}z|^2 }dA(w) \right)^2(1-|z|^2)^pdA(z)\\ &\quad\lesssim \sum_{k=1}^n\sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|f(z)|^2|T_{|g^{\prime}_k|}(z)|^2(1-|z|^2)^pdA(z), \end{align*} $$

where

$$ \begin{align*}T_h(z)=\int_{{\mathbb D}}{ h(w) \over |1-\bar{w}z|^2 }dA(w).\end{align*} $$

We write $ fT_{|g^{\prime }_k|}=T_{f|g^{\prime }_k|}+(fT_{|g^{\prime }_k|}-T_{f|g^{\prime }_k|} )$ . Since $g_k\in M(\mathcal {D}_p^{\lambda })$ , by Lemma 5, we get that $ |f(z)|^2|g^{\prime }_k(z)|^2(1-|z|^2)^pdA(z)$ is a $p\lambda $ -Carleson measure. Lemma 4 yields that $|T_{f|g^{\prime }_k|}|^2(1-|z|^2)^pdA(z)$ is also a $p\lambda $ -Carleson measure. Applying the identity

$$ \begin{align*}f(z)T_{|g^{\prime}_k|}(z)-T_{f|g^{\prime}_k|}(z)=\int_{{\mathbb D}}(f(z)-f(w)){ |g^{\prime}_k(w)| \over |1-\bar{w}z|^2 }dA(w),\end{align*} $$

the Cauchy–Schwarz inequality, and $g_k\in M(\mathcal {D}_p^{\lambda })\subset Q_p\subset \mathcal {D}_p^{\lambda } $ (see Corollary 3.1 in [Reference Galanopoulos, Merchán and Siskakis8]), we obtain that

$$ \begin{align*} &|f(z)T_{|g^{\prime}_k|}(z)-T_{f|g^{\prime}_k|}(z)|^2\le\left( \int_{{\mathbb D}}|f(z)-f(w)|{ |g^{\prime}_k(w)| \over |1-\bar{w}z|^2 }dA(w) \right)^2\\ &\quad\le \left( \int_{{\mathbb D}}{ |f(z)-f(w)|^2(1-|w|^2)^{-p} \over |1-\bar{w}z|^{4-2p} }dA(w) \right)\left( \int_{{\mathbb D}}{ |g^{\prime}_k(w)|^2(1-|w|^2)^p \over |1-\bar{w}z|^{2p} } dA(w) \right)\\ &\quad\le \left( \int_{{\mathbb D}}{ |f(z)-f(w)|^2(1-|w|^2)^{-p} \over |1-\bar{w}z|^{4-2p} }dA(w) \right)\|g_k\|_{Q_p}^2(1-|z|^2)^{-p}. \end{align*} $$

Using Proposition 4.27 of [Reference Wulan and Zhu25] and following the ideas of the proof of Lemma 1 in [Reference Liu and Lou14], we obtain that

$$ \begin{align*}|f\circ\varphi_w(u)-f(w)|\lesssim\int_{{\mathbb D}}|(f\circ\varphi_w)'(\xi)|{ (1-|\xi|^2)^{2} \over |1-\bar{\xi}u|^{3} }dA(\xi). \end{align*} $$

The Cauchy–Schwarz inequality and Lemma 2 yield that

$$ \begin{align*} |f\circ\varphi_w(u)-f(w)|^2 &\le \int_{{\mathbb D}}|(f\circ\varphi_w)'(\xi)|^2{ (1-|\xi|^2)^{3-p} \over |1-\bar{\xi}u|^2 }dA(\xi)\int_{{\mathbb D}}{ (1-|\xi|^2)^{1+p} \over |1-\bar{\xi}u|^4 }dA(\xi)\\ &\lesssim (1-|u|^2)^{p-1}\int_{{\mathbb D}}|(f\circ\varphi_w)'(\xi)|^2{ (1-|\xi|^2)^{3-p} \over |1-\bar{\xi}u|^2 }dA(\xi). \end{align*} $$

Since

$$ \begin{align*}|1-\bar{a}\varphi_w(u)|={ |1-a\bar{w}||1-\bar{u}\varphi_w(a)| \over |1-\bar{w}u| },\end{align*} $$

applying Lemma 2 and Lemma D in [Reference Pau and Peláez18] and changing the variable $z=\varphi _w(u)$ , we have

$$ \begin{align*} &(1-|a|^2)^{p(1-\lambda)}\int_{{\mathbb D}}|f(z)T_{|g^{\prime}_k|}(z)-T_{f|g^{\prime}_k|}(z)|^2(1-|\varphi_a(z)|^2)^pdA(z)\\&\lesssim \|g_k\|_{Q_p}^2(1-|a|^2)^{p(2-\lambda)} \int_{{\mathbb D}} \int_{{\mathbb D}}{ |f(z)-f(w)|^2(1-|w|^2)^{-p} \over |1-\bar{w}z|^{4-2p} }dA(w) {dA(z) \over|1-\bar{a}z|^{2p}} \\&=\|g_k\|_{Q_p}^2 (1-|a|^2)^{p(2-\lambda)}\int_{{\mathbb D}}\int_{{\mathbb D}}{| f(\varphi_w(u))-f(w)|^2 \over |1-\bar{w}\varphi_w(u)|^{4-2p} }\\&\quad\cdot{ (1-|w|^2)^{2-p} \over |1-\bar{w}u|^4|1-\bar{a}\varphi_w(u)|^{2p} }dA(u)dA(w)\\&=\|g_k\|_{Q_p}^2 (1-|a|^2)^{p(2-\lambda)}\int_{{\mathbb D}}\int_{{\mathbb D}}| f(\varphi_w(u))-f(w)|^2\\&\quad\cdot{ (1-|w|^2)^{p-2} \over |1-\bar{w}u|^{2p} |1-\bar{a}\varphi_w(u)|^{2p}}dA(u)dA(w)\\&=\|g_k\|_{Q_p}^2 (1-|a|^2)^{p(2-\lambda)} \int_{{\mathbb D}}\int_{{\mathbb D}}| f(\varphi_w(u))-f(w)|^2\\&\quad\cdot { (1-|w|^2)^{p-2} \over |1-\bar{w}a|^{2p} |1-\bar{u}\varphi_w(a)|^{2p}}dA(u)dA(w)\\&\lesssim \|g_k\|_{Q_p}^2 (1-|a|^2)^{p(2-\lambda)} \int_{{\mathbb D}}\int_{{\mathbb D}}\int_{{\mathbb D}}|(f\circ\varphi_w)'(\xi)|^2{ (1-|\xi|^2)^{3-p} (1-|w|^2)^{p-2} \over |1-\bar{\xi}u|^2 |1-\bar{w}a|^{2p} }\\&\quad\cdot{ (1-|u|^2)^{p-1} \over |1-\bar{u}\varphi_w(a)|^{2p} }dA(\xi)dA(u)dA(w)\\&=\|g_k\|_{Q_p}^2 (1-|a|^2)^{p(2-\lambda)} \int_{{\mathbb D}}\int_{{\mathbb D}}|(f\circ\varphi_w)'(\xi)|^2{ (1-|\xi|^2)^{3-p}(1-|w|^2)^{p-2}\over |1-\bar{w}a|^{2p} }\\&\quad\cdot\int_{{\mathbb D}}{ (1-|u|^2)^{p-1}\over |1-\bar{\xi}u|^2 |1-\bar{u}\varphi_w(a)|^{2p}}dA(u)dA(\xi)dA(w)\\&\lesssim \|g_k\|_{Q_p}^2 (1\!-\!|a|^2)^{p(2-\lambda)}\!\int_{{\mathbb D}}\int_{{\mathbb D}}|(f\circ\varphi_w)'(\xi)|^2{ (1-|\xi|^2)^2 (1-|w|^2)^{p-2} \over |1-\bar{w}a|^{2p} |1-\bar{\xi}\varphi_w(a)|^{2p}}dA(\xi)dA(w)\\&=\|g_k\|_{Q_p}^2 (1\!-\!|a|^2)^{p(2-\lambda)}\!\int_{{\mathbb D}}\int_{{\mathbb D}}|(f\circ\varphi_w)'(\xi)|^2{ (1-|\xi|^2)^2 (1-|w|^2)^{p-2} \over |1-\bar{w}\xi|^{2p} |1-\bar{a}\varphi_w(\xi)|^{2p}}dA(\xi)dA(w)\\&=\|g_k\|_{Q_p}^2 (1-|a|^2)^{p(2-\lambda)}\int_{{\mathbb D}}\int_{{\mathbb D}}|f'(\eta)|^2{ (1-|\varphi_w(\eta)|^2)^2 (1-|w|^2)^{p-2} \over |1-\bar{w}\varphi_w(\eta)|^{2p} |1-\bar{a}\eta|^{2p}}dA(\eta)dA(w)\\&=\|g_k\|_{Q_p}^2 (1-|a|^2)^{p(2-\lambda)}\int_{{\mathbb D}}\int_{{\mathbb D}}|f'(\eta)|^2{ (1-|w|^2)^{-p} (1-|\eta|^2)^2 \over|1-\bar{w}\eta|^{4-2p}|1-\bar{a}\eta|^{2p} }dA(\eta)dA(w)\\ &=\|g_k\|_{Q_p}^2 (1-|a|^2)^{p(2-\lambda)}\int_{{\mathbb D}}|f'(\eta)|^2{(1-|\eta|^2)^2 \over|1-\bar{a}\eta|^{2p} }\int_{{\mathbb D}}{ (1-|w|^2)^{-p} \over |1-\bar{w}\eta|^{4-2p} }dA(w)dA(\eta)\\&\lesssim \|g_k\|_{Q_p}^2(1-|a|^2)^{p(2-\lambda)}\int_{{\mathbb D}}|f'(\eta)|^2{(1-|\eta|^2)^p\over |1-\bar{a}\eta|^{2p} }dA(\eta)\\&=\|g_k\|_{Q_p}^2(1-|a|^2)^{p(1-\lambda)}\int_{{\mathbb D}}|f'(\eta)|^2(1-|\varphi_a(\eta)|^2)^pdA(\eta)\\&\lesssim \|g_k\|_{\mathcal{D}_p^{\lambda}}^2\|f\|_{\mathcal{D}_p^{\lambda}}^2. \end{align*} $$

This implies that $ |\nabla (vf)(z)|^2(1-|z|^2)^pdA(z)$ is a $p\lambda $ -Carleson measure. Then Corollary 1 deduces that $vf\in \mathcal {D}_p^{\lambda }(\partial {\mathbb D})$ .▪

Let $g=(g_1,g_2,\ldots ,g_n)\in H({\mathbb D})^n$ and $f=(f_1,f_2,\ldots ,f_n)\in H({\mathbb D})^n$ . Consider the operator $M_g$ defined by

$$ \begin{align*}M_g(f)=\sum_{k=1}^nf_kg_k.\end{align*} $$

Similarly to the proof of Theorem 1.2 in [Reference Pau16] (using the ideas of Theorem 3.1 of [Reference Xiao26]), by Theorem 1, we obtain the following result. We omit the details of the proof.

Theorem 3 Let $0<\lambda ,p<1$ and $g\in H({\mathbb D})^n$ . The following statements are equivalent:

  1. (a) $M_g: M(\mathcal {D}_p^{\lambda })\times \cdots \times M(\mathcal {D}_p^{\lambda })\to M(\mathcal {D}_p^{\lambda })$ is surjective;

  2. (b) $M_g: \mathcal {D}_p^{\lambda }\times \cdots \times \mathcal {D}_p^{\lambda }\to \mathcal {D}_p^{\lambda }$ is surjective; and

  3. (c) $g_1,\ldots ,g_n\in M(\mathcal {D}_p^{\lambda })$ and (1) holds.

4 Proof of Theorem 2

In this section, we give a detail proof for Theorem 2, i.e., we show that the Wolff theorem holds for the algebra of pointwise multipliers of the Dirichlet–Morrey space $\mathcal {D}_p^{\lambda } $ .

Proof of Theorem 2

First, considering the trivial case $g\equiv 0$ , we can choose $f_j\equiv 0, j=1,2,\ldots ,n$ . Then the desired result is obtained. Next, we consider the nontrivial case. Let $g,g_1,g_2,\ldots ,g_n\in M(\mathcal {D}_p^{\lambda })$ satisfying (2). Without loss of generality, we suppose that $g,g_1,g_2,\ldots ,g_n$ are the analytic function on $\bar {{\mathbb D}}$ and satisfying $\|g\|_{H^\infty }\le 1$ , $\|g_j\|_{H^\infty }\le 1,j=1,2,\ldots ,n$ (see [Reference Garnett9, Proof of Theorem 2.3, p. 319]). Let

$$ \begin{align*}\Psi_j(z)={g(z)\bar{g}_j(z) \over \sum_{k=1}^n|g_k(z)|^2 },\,\,\,\,j=1,2,\ldots,n.\end{align*} $$

It is obvious that $\Psi _j $ , satisfying $|\Psi _j(z)|\le 1$ , is the $C^\infty $ function on $\bar {{\mathbb D}}$ such that $ \sum _{j=1}^ng_j\Psi _j=g$ . For $ 1\le k,j\le n$ , we assume that the following equation

$$ \begin{align*}\bar{\partial}b_{j,k}=g\Psi_j\bar{\partial}\Psi_k\end{align*} $$

has solution $b_{j,k}\in M(\mathcal {D}_p^{\lambda })$ and $\|b_{j,k}\|_{H^\infty }\le 1$ . We write

$$ \begin{align*}f_j(z)=g^2(z)\Psi_j(z)+\sum_{k=1}^n(b_{j,k}(z)-b_{k,j}(z) )g_k(z),\,\,\,\,j=1,2,\ldots,n.\end{align*} $$

Then we get that

$$ \begin{align*}\sum_{j=1}^n g_jf_j=g^2\sum_{j=1}^ng_j\Psi_j=g^3.\end{align*} $$

In addition,

$$ \begin{align*}{\partial f_j\over \partial\bar{z}}=g^2{ \partial \Psi_j \over \partial\bar{z}}+\sum_{k=1}^ngg_k\bigg( \Psi_j{ \partial\Psi_k \over \partial\bar{z} }-\Psi_k{\partial\Psi_j \over \partial\bar{z}} \bigg)=0.\end{align*} $$

Therefore, $f_j\in H({\mathbb D})$ . Moreover, $\|f_j\|_{H^\infty } \leq 1+2n$ , and hence $f_j\in H^\infty $ .▪

Since $ { \partial \overline {g_j}\over \partial \bar {z}}=\overline {g^{\prime }_j}$ , and

$$ \begin{align*}{\partial\Psi_j \over\partial\bar{z} }={ g\overline{g^{\prime}_j} \over \sum_{k=1}^n|g_k|^2 }-{ g\overline{g_j}\sum_{k=1}^ng_k\overline{g^{\prime}_k} \over \left( \sum_{k=1}^n|g_k|^2\right)^2 }={ g\sum_{k=1}^ng_k(\overline{g_k}\overline{g^{\prime}_j} -\overline{g_j}\overline{g^{\prime}_k} ) \over \left( \sum_{k=1}^n|g_k|^2\right)^2},\end{align*} $$

we see that

$$ \begin{align*}\left| {\partial\Psi_j \over\partial\bar{z}} \right|{}^2\lesssim{ |g|^2\left( \sum_{k=1}^n|g_k|^2\right)^2\sum_{k=1}^n|g^{\prime}_k|^2 \over \left( \sum_{k=1}^n|g_k|^2\right)^4 } \lesssim { \sum_{k=1}^n|g^{\prime}_k|^2 \over \sum_{k=1}^n|g_k|^2}.\end{align*} $$

Similarly,

$$ \begin{align*}\left| {\partial\Psi_j \over\partial z} \right|{}^2\lesssim{|g'|^2 \sum_{k=1}^n|g_k|^2 \over\left( \sum_{k=1}^n|g_k|\right)^2 }+{ |g|^2\left( \sum_{k=1}^n|g_k|^2\right)^2\sum_{k=1}^n|g^{\prime}_k|^2 \over \left( \sum_{k=1}^n|g_k|^2\right)^4 }\lesssim{|g'|^2+ \sum_{k=1}^n|g^{\prime}_k|^2 \over \sum_{k=1}^n|g_k|^2}.\end{align*} $$

Therefore, by the assumption, we get that

$$ \begin{align*}|g\nabla\Psi_j|^2 \lesssim |g'|^2+ \sum_{k=1}^n|g^{\prime}_k|^2.\end{align*} $$

Now, we show that $ f_j\in M(\mathcal {D}_p^{\lambda })$ . To do this, we need to show that $ ff_j\in \mathcal {D}_p^{\lambda }$ for any $ f\in \mathcal {D}_p^{\lambda }$ . First of all, we are going to prove that $fg^2\Psi _j \in \mathcal {D}_p^{\lambda }$ . Since $g\in H^\infty $ and $|\Psi _j(z) |\leq 1$ , we get that

$$ \begin{align*} &\sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|g^2(z)\Psi_j(z)f'(z)|^2(1-|z|^2)^pdA(z)\\ &\quad\le \sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|f'(z)|^2(1-|z|^2)^pdA(z) <\infty. \end{align*} $$

Since $g\in M(\mathcal {D}_p^{\lambda }) $ , applying Lemma 5, we get

$$ \begin{align*} &\sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|g(z)g'(z)\Psi_j(z)f(z)|^2(1-|z|^2)^pdA(z)\\ &\quad\lesssim \sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|f(z)g'(z)|^2(1-|z|^2)^pdA(z)<\infty. \end{align*} $$

Using the fact that $|g\nabla \Psi _j|^2\lesssim |g'|^2+ \sum _{k=1}^n|g^{\prime }_k|^2 $ and Lemma 5 again, we obtain that

$$ \begin{align*} &\sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|g^2(z)f(z)\nabla\Psi_j(z)|^2(1-|z|^2)^pdA(z)\\ &\quad\lesssim \sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|f(z)g'(z)|^2(1-|z|^2)^pdA(z)\\ &\qquad{}+\sum_{j=1}^n\sup_{I\subset \partial{\mathbb D}}{1\over |I|^{p\lambda}}\int_{S(I)}|f(z)g^{\prime}_j(z)|^2(1-|z|^2)^pdA(z)<\infty. \end{align*} $$

So, using the fact that

$$ \begin{align*} |\nabla(fg^2\Psi_j)|^2 \lesssim|g^2\Psi_jf'|^2+|gg'\Psi_jf|^2+|g^2f\nabla\Psi_j|^2,\end{align*} $$

we get that $fg^2\Psi _j \in \mathcal {D}_p^{\lambda }$ .

Now, we are going to prove that the other part of $ f_jf$ belongs to $ \mathcal {D}_p^{\lambda } $ . Since $ g_k\in M(\mathcal {D}_p^{\lambda })$ , $b_{j,k}f\in \mathcal {D}_p^{\lambda }, 1\le j,k\le n$ , we obtain that

$$ \begin{align*}\sum_{k=1}^n(b_{j,k}-b_{k,j})g_kf\in\mathcal{D}_p^{\lambda}.\end{align*} $$

Hence, $f_jf \in \mathcal {D}_p^{\lambda },$ that is, $ f_j\in M(\mathcal {D}_p^{\lambda }),j=1,2,\ldots ,n$ .

Now, it remains to show that we can find a solution of $\bar {\partial }b_{j,k}=g\Psi _j\bar {\partial }\Psi _k$ satisfying $ b_{j,k}\in M(\mathcal {D}_p^{\lambda })$ . To do this, it is sufficient to deal with the equation $ \bar {\partial }u=G$ , where $G=g\Psi _j\bar {\partial }\Psi _k$ . It is easy to see that

$$ \begin{align*}|G(z)|^2=|g\Psi_j\bar{\partial}\Psi_k|^2\lesssim|g|^2 \sum_{k=1}^n|g^{\prime}_k|^2 \le \sum_{k=1}^n|g^{\prime}_k |^2. \end{align*} $$

Since $ M(\mathcal {D}_p^{\lambda })\subset Q_p$ (see Corollary 3.1 in [Reference Galanopoulos, Merchán and Siskakis8]) and $ g_k\in M(\mathcal {D}_p^{\lambda })$ , we obtain that $|G(z)|^2(1-|z|^2)^pdA(z) $ is a p-Carleson measure. Lemma 3 yields that $|G(z)|dA(z) $ is a Carleson measure. Then we can obtain a solution $v\in M(\mathcal {D}_p^{\lambda })$ by a similar method to Theorem 1.

References

Banjade, D. P., Wolff’s ideal theorem on Qp spaces. Rocky Mountain J. Math. 49(2019), no. 7, 21212133.CrossRefGoogle Scholar
Banjade, D. P. and Trent, T. T., Wolff’s problem of ideals in the multiplier algebra on Dirichlet space. Complex Anal. Oper. Theory 8(2014), 17071721.10.1007/s11785-014-0356-4CrossRefGoogle Scholar
Banjade, D. P. and Trent, T. T., Wolff’s problem of ideals in the multiplier algebra on weighted Dirichlet space. Houston J. Math. 41(2015), no. 3, 915932.Google Scholar
Bao, G., Lou, Z., Qian, R., and Wulan, H., On multipliers of Dirichlet type spaces. Complex Anal. Oper. Theory 9(2015), no. 8, 17011732.CrossRefGoogle Scholar
Bao, G. and Pau, J., Boundary multipliers of a family of Möbius invariant function spaces. Ann. Acad. Sci. Fenn. Math. 41(2016), 199220.CrossRefGoogle Scholar
Carleson, L., Interpolations by bounded analytic functions and the corona problem. Ann. Math. 76(1962), no. 3, 547559.CrossRefGoogle Scholar
Essén, M. and Wulan, H., On analytic and meromorphic functions and spaces of QK-type. Illinois J. Math. 46(2002), no. 4, 12331258.CrossRefGoogle Scholar
Galanopoulos, P., Merchán, N., and Siskakis, A. G., A family of Dirichlet–Morrey spaces. Complex Var. Elliptic Equ. 64(2019), no. 10, 16861702.CrossRefGoogle Scholar
Garnett, J., Bounded analytic functions, Academic Press, New York, 1981.Google Scholar
Girela, D., Analytic functions of bounded mean oscillation. In: Complex function spaces, Univ. Joensuu Dept. Math. Rep. Ser., 4, University of Joensuu, Joensuu, 2001, pp. 61170.Google Scholar
Jones, P. W., L estimates for the $\bar{\partial }$ problem in a half-plane. Acta Math. 150(1983), 137152.CrossRefGoogle Scholar
Li, D. and Wulan, H., Corona and Wolff theorems for the multiplier algebras of QK spaces (in Chinese). Sci. China Math. 51(2021), no. 2, 301314.Google Scholar
Li, P., Liu, J., and Lou, Z., Integral operators on analytic Morrey spaces. Sci. China Math. 57(2014), 19611974.CrossRefGoogle Scholar
Liu, J. and Lou, Z., Carleson measure for analytic Morrey spaces. Nonlinear Anal. 125(2015), 423432.CrossRefGoogle Scholar
Nicolau, A. and Xiao, J., Bounded functions in Möbius invariant Dirichlet spaces. J. Funct. Anal. 150(1997), no. 2, 383425.CrossRefGoogle Scholar
Pau, J., Multipliers of Qp spaces and the corona theorem. Bull. Lond. Math. Soc. 40(2008), no. 2, 327336.CrossRefGoogle Scholar
Pau, J., Bounded Möbius invariant QK spaces. J. Math. Anal. Appl. 338(2008), no. 2, 10291042.CrossRefGoogle Scholar
Pau, J. and Peláez, J., Multipliers of Möbius invariant Qs spaces. Math. Z. 261(2009), no. 3, 545555.CrossRefGoogle Scholar
Pau, J. and Zhao, R., Carleson measures, Riemann–Stieltjes and multiplication operators on a general family of function spaces. Integr. Equ. Oper. Theory 78(2014), 483514.CrossRefGoogle Scholar
Pommerenke, C., Schlichte Funktionen und analytische Funktionen von beschr $\ddot{a}$ nkter mittlerer Oszillation. Comment. Math. Helv. 52(1997), 591602.CrossRefGoogle Scholar
Treil, S., Estimates in the corona theorem and ideal of H: a problem of T. Wolff. J. Anal. Math. 87(2002), 481495.CrossRefGoogle Scholar
Trent, T. T., A corona theorem for the multipliers on Dirichlet space. Integr. Equ. Oper. Theory 49(2004), 123139.CrossRefGoogle Scholar
Wu, Z. and Xie, C., Q spaces and Morrey spaces. J. Funct. Anal. 201(2003), no. 1, 282297.CrossRefGoogle Scholar
Wulan, H. and Zhou, J., QK and Morrey type spaces. Ann. Acad. Sci. Fenn. Math. 38(2013), 193207.CrossRefGoogle Scholar
Wulan, H. and Zhu, K., Möbius invariant QK spaces, Springer, Cham, 2017, 253 pp.CrossRefGoogle Scholar
Xiao, J., The Qp corona theorem. Pac. J. Math. 194(2000), no. 2, 491509.CrossRefGoogle Scholar
Xiao, J., Holomorphic Q classes, Springer, Berlin, 2001.10.1007/b87877CrossRefGoogle Scholar
Zhu, K., Operator theory in function spaces. 2nd ed., American Mathematical Society, Providence, RI, 2007.CrossRefGoogle Scholar