Published online by Cambridge University Press: 20 November 2018
Let $p$ be a prime and
$F$ a field containing a primitive
$p$-th root of unity. Then for
$n\,\in \,\mathbb{N}$, the cohomological dimension of the maximal pro-
$p$-quotient
$G$ of the absolute Galois group of
$F$ is at most
$n$ if and only if the corestriction maps
${{H}^{n}}\left( H,\ {{\mathbb{F}}_{p}} \right)\,\to \,{{H}^{n}}\left( G,\ {{\mathbb{F}}_{p}} \right)$ are surjective for all open subgroups
$H$ of index
$p$. Using this result, we generalize Schreier's formula for
${{\dim}_{{{\mathbb{F}}_{p}}}}\,{{H}^{1}}\,\left( H,\ {{\mathbb{F}}_{p}} \right)$ to
${{\dim}_{{{\mathbb{F}}_{p}}}}{{H}^{n}}\left( H,\ {{\mathbb{F}}_{p}} \right)$.