Published online by Cambridge University Press: 20 November 2018
We show that if $R\,=\,{{\oplus }_{n\in \mathbb{N}0}}\,{{R}_{n}}$ is a Noetherian homogeneous ring with local base ring
$({{R}_{0}},\,{{m}_{0}})$, irrelevant ideal
${{R}_{+}}$, and
$M$ a finitely generated graded
$R$-module, then
$H_{{{m}_{0}}R}^{j}\,(H_{R+}^{t}\,(M))$ is Artinian for
$j\,=\,0,\,1$ where
$t\,=\,\inf ${
$i\in {{\mathbb{N}}_{0}}:H_{R+}^{i}(M)$ is not finitely generated}. Also, we prove that if
$\text{cd(}{{R}_{+}},M)\,=\,2$, then for each
$i\,\in \,{{\mathbb{N}}_{0}},\,H_{{{m}_{0}}R}^{i}\,(H_{R+}^{2}\,(M))$ is Artinian if and only if
$H_{{{m}_{0}}R}^{i+2}(H_{R+}^{1}(M))$ is Artinian, where
$ \text{cd(}{{R}_{+}},\,M)$ is the cohomological dimension of
$M$ with respect to
${{R}_{+}}$. This improves some results of R. Sazeedeh.