Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-10T21:04:23.554Z Has data issue: false hasContentIssue false

L-series for Vector-Valued Weakly Holomorphic Modular Forms and Converse Theorems

Published online by Cambridge University Press:  21 January 2025

Subong Lim
Affiliation:
Department of Mathematics Education, Sungkyunkwan University, Jongno-gu, Seoul 110-745, Republic of Korea subong@skku.edu
Wissam Raji*
Affiliation:
Department of Mathematics, American University of Beirut (AUB) and the Number Theory Research Unit at the Center for Advanced Mathematical Sciences (CAMS) at AUB, Beirut, Lebanon
*
Rights & Permissions [Opens in a new window]

Abstract

We introduce the L-series of weakly holomorphic modular forms using Laplace transforms and give their functional equations. We then determine converse theorems for vector-valued harmonic weak Maass forms, Jacobi forms, and elliptic modular forms of half-integral weight in Kohnen plus space.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

1 Introduction

The theory of L-functions exhibits natural connections with various mathematical subjects including number fields, automorphic forms, Artin representations, Shimura varieties, abelian varieties, and intersection theory. L-series of holomorphic modular forms and Maass forms have been studied extensively and many interesting results have emerged. However, when it comes to harmonic weak Maass forms, the study of the forms themselves seems to have attracted more attention than the study of their L-series. Several definitions of L-series are associated with weakly holomorphic modular forms in the literature. However, almost all have fallen short of recovering a converse theorem except for the definition given in [Reference Diamantis, Lee, Raji and Rolen9]. Recently, in [Reference Diamantis, Lee, Raji and Rolen9], using Laplace transforms, L-series of harmonic weak Maass forms were introduced. The formulation presented made it possible to present a converse theorem for weakly holomorphic modular forms.

On the other hand, vector-valued modular forms are important generalizations of elliptic modular forms that arise naturally in the theory of Jacobi forms, Siegel modular forms, and Moonshine. Vector-valued modular forms have been used as an important tool in tackling classical problems in the theory of modular forms. For example, Selberg used these forms to give estimates for the Fourier coefficients of the classical modular forms [Reference Selberg22]. Borcherds in [Reference Borcherds19] and [Reference Borcherds20] used vector-valued modular forms associated with Weil representations to describe the Fourier expansion of various theta liftings. Some applications of vector-valued modular forms stand out in high energy physics, mainly by providing a method of differential equations to construct the modular multiplets, and also revealing the simple structure of the modular invariant mass models [Reference Liu and Ding8]. Other applications concerning vector-valued modular forms of half-integral weight seem to provide a simple solution to the Riemann–Hilbert problem for representations of the modular group [Reference Bantay and Gannon2]. So it is natural to study the L-series of vector-valued modular forms and their properties, in connection with the development of a Hecke theory to the space of vector-valued modular forms.

In this paper, we define L-series for vector-valued harmonic weak Maass forms and in particular vector-valued weakly holomorphic modular forms using the Laplace transform where our definition enables us to give a converse theorem. The definition of our L-series is analogous to that in [Reference Diamantis, Lee, Raji and Rolen9]. The main point of our L-series definition is to recover a converse theorem for vector-valued weakly holomorphic modular forms. Moreover, we determine similar definitions for Jacobi forms and modular forms of half-integral weight in Kohnen plus space and determine converse theorems in those cases as well. Converse theorems have historically offered a means to describe Dirichlet series linked to modular forms by examining their analytic properties. Hecke initially demonstrated that Dirichlet series connected to modular forms exhibit certain analytic properties, and then went on to show conversely that these analytic properties define modular Dirichlet series [Reference Hecke10]. A common application of a converse theorem that might initially come to mind is in addressing the modularity of certain arithmetic or geometric objects associated with a given L-series. Instead, the most natural way of applying the converse theorem is to functoriality. For example, the transfer of automorphic representations from some group G to $\mathrm {GL}_n$ . In another application of some of these cases of functoriality, Kim and Shahidi have established the best-known general bounds toward the Ramanujan conjecture for $\mathrm {GL}_2$ [Reference Kim and Shahidi15]. As a result, the main focus of our paper is to recover converse theorems for different modular objects in the vector-valued case through their L-series that are defined using Laplace transforms.

2 L-series of vector-valued weakly holomorphic modular forms

In this section, we introduce the L-series of a vector-valued weakly holomorphic modular form and prove some of its properties. In particular, we prove a converse theorem. We start by introducing some notation.

Let $\Gamma =\mathrm {SL}_2(\mathbb {Z})$ . Let $k\in \frac 12\mathbb {Z}$ and $\chi $ a unitary multiplier system of weight k on $\Gamma $ , i.e., $\chi :\Gamma \to \mathbb {C}$ satisfies the following conditions:

  1. (1) $|\chi (\gamma )| = 1$ for all $\gamma \in \Gamma $ .

  2. (2) $\chi $ satisfies the consistency condition

    $$\begin{align*}\chi(\gamma_3) (c_3\tau + d_3)^k =\chi(\gamma_1)\chi(\gamma_2) (c_1\gamma_2\tau + d_1)^k (c_2\tau+d_2)^k, \end{align*}$$
    where $\gamma _3 =\gamma _1\gamma _2$ and $\gamma _i =\left (\begin {smallmatrix} a_i&b_i\\c_i&d_i\end {smallmatrix}\right )\in \Gamma $ for $i=1,2$ , and $3$ .

Let m be a positive integer and $\rho :\Gamma \to \mathrm {GL}_m(\mathbb {C})$ an m-dimensional unitary complex representation such that $\rho (T)$ is diagonal, where $T:=\left (\begin {smallmatrix} 1&1\\0&1\end {smallmatrix}\right )$ . We denote the diagonal entries of $\chi (T)\rho (T)$ by $e^{2\pi i\kappa _1},\ldots , e^{2\pi i\kappa _m}$ , where $\kappa _1,\ldots ,\kappa _m$ are real numbers with $0\leq \kappa _i <1$ for all $1\leq i\leq m$ . Let $\{\mathbf {e}_1,\ldots ,\mathbf {e}_m\}$ denote the standard basis of $\mathbb {C}^m$ . For a vector-valued function $f =\sum _{j=1}^m f_j\mathbf {e}_j$ on $\mathbb {H}$ and $\gamma =\left (\begin {smallmatrix} a&b\\c&d\end {smallmatrix}\right )\in \Gamma $ , define a slash operator by

$$\begin{align*}(f|_{k,\chi,\rho}\gamma)(\tau):= (c\tau+d)^{-k}\chi^{-1}(\gamma)\rho(\gamma)^{-1} f(\gamma\tau). \end{align*}$$

The definition of the vector-valued modular forms is given as follows.

Definition 2.1 A vector-valued weakly holomorphic modular form of weight k, multiplier system $\chi $ , and type $\rho $ on $\Gamma $ is a sum $f =\sum _{j=1}^m f_j\mathbf {e}_j$ of functions holomorphic in $\mathbb {H}$ satisfying the following conditions:

  1. (1) $f|_{k,\chi ,\rho }\gamma = f$ for all $\gamma \in \Gamma $ .

  2. (2) For each $1\leq j\leq m$ , each function $f_j$ has a Fourier expansion of the form

    (2.1) $$ \begin{align} f_j(\tau) =\sum_{n+\kappa_j\gg -\infty} a_{f,j}(n)e^{2\pi i(n+\kappa_j)\tau}. \end{align} $$

The space of all vector-valued weakly holomorphic modular forms of weight k, multiplier system $\chi $ , and type $\rho $ on $\Gamma $ is denoted by $M^!_{k,\chi ,\rho }$ . There is a subspace $S_{k,\chi ,\rho }$ of vector-valued cusp forms for which we require each $a_j(n) = 0$ when $n+\kappa _j$ is non-positive.

For a vector-valued cusp form $f(\tau ) =\sum _{j=1}^m\sum _{n+\kappa _j>0} a_{f,j}(n)e^{2\pi i(n+\kappa _j)\tau }\mathbf {e}_j\in S_{k,\chi ,\rho }$ , then $a_{f,j}(n) = O(n^{k/2})$ for every $1\leq j\leq m$ as $n\to \infty $ by the same argument as for classical modular forms (for more details, see [Reference Knopp and Mason16]). Then, the vector-valued L-series defined by

(2.2) $$ \begin{align} L(f,s) :=\sum_{j=1}^m\sum_{n+\kappa_j>0}\frac{a_j(n)}{(n+\kappa_j)^s}\mathbf{e}_j \end{align} $$

converges absolutely for $\mathrm {Re}(s)\gg 0$ . This has a (vector-valued) integral representation

$$\begin{align*}\frac{\Gamma(s)}{(2\pi)^s} L(f,s) =\int_0^\infty f(iv) v^s\frac{dv}{v}. \end{align*}$$

From this, we see that it has an analytic continuation to $\mathbb {C}$ and a functional equation

$$\begin{align*}L^*(f,s) = i^k\chi(S)\rho(S) L^*(f,k-s), \end{align*}$$

where $L^*(f,s) =\frac {\Gamma (s)}{(2\pi )^s} L(f,s)$ and $S :=\left (\begin {smallmatrix} 0&-1\\1&0\end {smallmatrix}\right )$ (for example, see [Reference Jin and Lim13, Reference Lim and Raji17, Reference Lim and Raji18]).

Let f be a vector-valued weakly holomorphic modular form in $M^!_{k,\chi ,\rho }$ with Fourier expansion of the form (2.1). Let $n_0\in \mathbb {N}$ be such that $f_j(\tau )$ are $O(e^{2\pi n_0 v})$ as $v=\mathrm {Im}(\tau )\to \infty $ for each $1\leq j\leq m$ . Let $\mathcal {F}_f$ be the space of test functions $\varphi :\mathbb {R}_+\to \mathbb {C}$ such that

  1. (1) $(\mathcal {L}\varphi )(s)$ converges for all s with $\mathrm {Re}(s)\geq -2\pi n_0$ ,

  2. (2) the series

    (2.3) $$ \begin{align} \sum_{n\gg-\infty} | a_{f,j}(n)| (\mathcal{L}|\varphi|)(2\pi (n+\kappa_j)) \end{align} $$
    converges for each $1\leq j\leq m$ .

The space $\mathcal {F}_f$ contains the compactly supported smooth functions on $\mathbb {R}_+$ because of the growth of $a_{f,j}(n)$ (for more details of the growth of $a_{f,j}(n)$ , see [Reference Bruinier and Funke5]). We define the vector-valued L-series map $L_f :\mathcal {F}_f\to \mathbb {C}^m$ by

$$\begin{align*}L_f(\varphi) :=\sum_{j=1}^m\sum_{n\gg-\infty} a_{f,j}(n) (\mathcal{L}\varphi)(2\pi (n+\kappa_j))\mathbf{e}_j. \end{align*}$$

Then, we prove that this L-series has an integral representation and satisfies a functional equation.

Theorem 2.2 Let f be a vector-valued weakly holomorphic modular form in $M^!_{k,\chi ,\rho }$ .

  1. (1) For $s\in \mathbb {C}$ , let $ I_s(x) := (2\pi )^s x^{s-1}\frac {1}{\Gamma (s)}$ . If f is a vector-valued cusp form, then $L_f(I_s) = L(f,s)$ .

  2. (2) For $\varphi \in \mathcal {F}_f$ , the L-series $L_f(\varphi )$ can be given by

    $$\begin{align*}L_f(\varphi) =\int_0^\infty f(iy)\varphi(y) dy. \end{align*}$$
  3. (3) We have the following functional equation:

    $$\begin{align*}L_f(\varphi) = i^k\rho(S) L_f(\varphi|_{2-k,\chi^{-1}} S), \end{align*}$$
    where $(\varphi |_{2-k,\chi ^{-1}} S)(x) := x^{k-2}\chi (S)\varphi \left (\frac 1 x\right )$ for all $x>0$ .

Proof (1) For $u>0$ and $\mathrm {Re}(s)>0$ , we have

$$\begin{align*}(\mathcal{L} I_s)(u) =\frac{(2\pi)^s}{\Gamma(s)}\int_0^\infty e^{-ut} t^{s-1}dt =\left(\frac{2\pi}{u}\right)^s. \end{align*}$$

Therefore, if f is a vector-valued cusp form, then $L_f(I_s)$ is the usual L-series of f defined in (2.2).

(2) Suppose that f has a Fourier expansion as in (2.1). By the definition of $L_f(\varphi )$ , we have

$$ \begin{align*} L_f(\varphi) &=\sum_{j=1}^m\sum_{n\gg-\infty} a_{f,j}(n) (\mathcal{L}\varphi)(2\pi (n+\kappa_j))\mathbf{e}_j\\ &=\sum_{j=1}^m\sum_{n\gg-\infty} a_{f,j}(n)\int_0^\infty e^{-2\pi (n+\kappa_j)t}\varphi(t)dt\mathbf{e}_j\\ &=\sum_{j=1}^m\left(\int_0^\infty f_j(it)\varphi(t) dt\right)\mathbf{e}_j. \end{align*} $$

The last equality follows from the fact that we can interchange the order of summation and integration since $\varphi \in \mathcal {F}_f$ .

(3) Since $f\in M^!_{k,\chi ,\rho }$ , we see that

$$\begin{align*}f(iy) = (iy)^{-k}\chi^{-1}(S)\rho(S)^{-1} f\left(i\frac1y\right) \end{align*}$$

for $y>0$ . Therefore, we have

$$ \begin{align*} L_f(\varphi) &=\int_0^\infty f(iy)\varphi(y)dy =\int_0^\infty f\left( i\frac 1y\right)\varphi\left(\frac 1y\right) y^{-2}dy\\ &=\int_0^\infty (iy)^k\chi(S)\rho(S) f(iy)\varphi\left(\frac 1y\right) y^{-2}dy\\ &= i^k\rho(S)\int_0^\infty f(iy) y^{k-2}\chi(S)\varphi\left(\frac 1y\right) dy. \end{align*} $$

Let $\mathcal {C}(\mathbb {R},\mathbb {C})$ be the space of piece-wise smooth complex-valued functions on $\mathbb {R}$ . For $s\in \mathbb {C}$ and $\varphi \in \mathcal {C}(\mathbb {R},\mathbb {C})$ , we define $\varphi _s(x) :=\varphi (x) x^{s-1}$ . We also define the series

$$\begin{align*}L(s,f,\varphi) := L_f(\varphi_s). \end{align*}$$

Then, we prove that this series has an analytic continuation to all $s\in \mathbb {C}$ and satisfies a functional equation.

Theorem 2.3 Let $f\in M^!_{k,\chi ,\rho }$ , and $n_0\in \mathbb {N}$ be such that $f_j(\tau )$ are $O(e^{2\pi n_0 v})$ as $v=\mathrm {Im}(\tau )\to \infty $ for each $1\leq j\leq m$ . Suppose that $\varphi \in \mathcal {C}(\mathbb {R},\mathbb {C})$ is a non-zero function such that, for some $\epsilon>0$ , $\varphi (x)$ and $\varphi (x^{-1})$ are $o(e^{-2\pi (n_0+\epsilon )x})$ as $x\to \infty $ . We further assume that series (2.3) converges. Then the series $L(s,f,\varphi )$ converges absolutely for $\mathrm {Re}(s)>\frac 12$ , has an analytic continuation to all $s\in \mathbb {C}$ and satisfies the functional equation

$$\begin{align*}L(s,f,\varphi) = i^k\rho(S) L(1-s, f,\varphi|_{1-k,\chi^{-1}} S). \end{align*}$$

Proof By the growth of $\varphi $ , we see that $\mathcal {L}(|\varphi |^2)(y)$ converges absolutely for $y\geq -2\pi n_0$ . For $y>0$ and $s\in \mathbb {C}$ with $\mathrm {Re}(s)>\frac 12$ , Cauchy–Schwarz inequality implies that

$$\begin{align*}(\mathcal{L}|\varphi_s|)(y)\leq (\mathcal{L}(|\varphi|^2)(y))^{\frac12} y^{-\mathrm{Re}(s)+\frac12} (\Gamma(2\mathrm{Re}(s)-1))^{\frac12}. \end{align*}$$

Therefore, $\varphi _s\in \mathcal {F}_f$ for $\mathrm {Re}(s)>\frac 12$ .

Recall that

$$\begin{align*}f(iy) = (iy)^{-k}\chi^{-1}(S)\rho(S)^{-1} f\left(i\frac1y\right) \end{align*}$$

for $y>0$ . Therefore, we have

$$ \begin{align*} L(s, f,\varphi) &= L_f(\varphi_s) =\int_0^\infty f(iy)\varphi_s(y)dy\\ &=\int_0^\infty f(iy)\varphi(s) y^{s-1} dy\\ &=\int_1^\infty f(iy)\varphi(y)y^{s-1} dy +\int_0^1 f(iy)\varphi(y)y^{s-1}dy\\ &=\int_1^\infty f(iy)\varphi(y)y^{s-1} dy +\int_1^\infty f\left( i\frac1y\right)\varphi\left(\frac 1y\right) y^{1-s}y^{-2}dy\\ &=\int_1^\infty f(iy)\varphi(y)y^{s-1} dy + i^k\rho(S)\int_1^\infty f(iy)\left(\varphi|_{1-k,\chi^{-1}}S\right)(y) y^{-s}dy. \end{align*} $$

By the growth of $\varphi $ at $0$ and $\infty $ , we see that the integrals

$$\begin{align*}\int_1^\infty f(iy)\varphi(y)y^{s-1} dy \quad \text{and} \int_1^\infty f(iy)\left(\varphi|_{1-k,\chi^{-1}}S\right)(y) y^{-s}dy \end{align*}$$

are well-defined for all $s\in \mathbb {C}$ , and give holomorphic functions.

Since $f\in M^!_{k,\chi ,\rho }$ , we obtain that $\rho (-I_2)\chi (-I_2) = (-1)^{-k} I_m$ , where $I_m$ denotes the identity matrix of size m. Therefore, we get the desired functional equation.

Let $S_c(\mathbb {R}_+)$ be a set of complex-valued, compactly supported, and piecewise smooth functions on $\mathbb {R}_+$ , which satisfies the following condition: for any $y\in \mathbb {R}_+$ , there exists $\varphi \in S_c(\mathbb {R}_+)$ such that $\varphi (y)\neq 0$ . We write $\langle \cdot ,\cdot \rangle $ for the standard scalar product on $\mathbb {C}^m$ , i.e.,

$$\begin{align*}\left\langle\sum_{j=1}^m\lambda_j\mathbf{e}_j,\sum_{j=1}^m\mu_j\mathbf{e}_j\right\rangle =\sum_{j=1}^m\lambda_j\overline{\mu_j}. \end{align*}$$

We now state the converse theorem in the case of vector-valued weakly holomorphic modular forms.

Theorem 2.4 For each $1\leq j\leq m$ , let $(a_{f,j}(n))_{n\geq -n_0}$ be’ a sequence of complex numbers such that $a_{f,j}(n) = O(e^{C\sqrt {n}})$ as $n\to \infty $ , for some $C>0$ . For each $\tau \in \mathbb {H}$ , set

$$\begin{align*}f(\tau) :=\sum_{j=1}^m\sum_{n=-n_0}^\infty a_{f,j}(n)e^{2\pi i(n+\kappa_j)\tau}\mathbf{e}_j. \end{align*}$$

Suppose that for each $\varphi \in S_c(\mathbb {R}_+)$ , the function $L_f(\varphi )$ satisfies

$$\begin{align*}L_f(\varphi) = i^k\rho(S) L_f(\varphi|_{2-k,\chi^{-1}} S). \end{align*}$$

Then, f is a vector-valued weakly holomorphic modular form in $M^!_{k,\chi ,\rho }$ .

Proof By the bound for $a_{f,j}(n)$ , we see that $f_j(\tau )$ converges absolutely to a smooth function on $\mathbb {H}$ for $1\leq j\leq m$ . Note that $\varphi _s\in S_c(\mathbb {R}_+)$ for any $s\in \mathbb {C}$ and $\varphi \in S_c(\mathbb {R}_+)$ . Since $\varphi \in S_c(\mathbb {R}_+)$ , there exist $0<c_1<c_2$ and $c_3>0$ such that $\mathrm {Supp}(\varphi )\subset [c_1, c_2]$ and $|\varphi (y)|\leq c_3$ for any $y>0$ . Then, for each $1\leq j\leq m$ and $n+\kappa _j>0$ , we have

$$ \begin{align*} & |a_{f,j}(n)| (\mathcal{L}|\varphi_s|) (2\pi (n+\kappa_j)) \\ &\quad \leq c_3 |a_{f,j}(n)| e^{-2\pi (n+\kappa_j)c_1} (c_2-c_1)\max\{c_1^{\mathrm{Re}(s)-1}, c_2^{\mathrm{Re}(s)-1}\}. \end{align*} $$

This implies that for each $1\leq j\leq m$ , we have

$$ \begin{align*} & \sum_{n\in\mathbb{Z}\atop n+\kappa_j>0} |a_{f,j}(n)| (\mathcal{L}|\varphi_s|)(2\pi (n+\kappa_j)) \\ &\quad \leq c_3(c_2-c_1)\max\{c_1^{\mathrm{Re}(s)-1}, c_2^{\mathrm{Re}(s)-1}\}\sum_{n\in\mathbb{Z}\atop n+\kappa_j>0} |a_{f,j}(n)| e^{-2\pi (n+\kappa_j) c_1}. \end{align*} $$

Therefore, $\varphi _s\in \mathcal {F}_f$ , and $L_f(\varphi _s)$ is an analytic function on $s\in \mathbb {C}$ by Weierstrass theorem.

Recall that by Theorem 2.2, we have

$$\begin{align*}L_f(\varphi_s) =\int_0^\infty f(iy)\varphi_s(y) dy. \end{align*}$$

By the Mellin inversion formula, we have

$$\begin{align*}f(iy)\varphi(y) =\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_f(\varphi_s) y^{-s} ds \end{align*}$$

for all $c\in \mathbb {R}$ and $y>0$ . By integration by parts, we see that for each $1\leq j\leq m$ ,

$$\begin{align*}|\langle L_f(\varphi_s),\mathbf{e}_j\rangle |\leq\frac{1}{|s|}\int_0^\infty\left|\frac{d}{dy} (f_j(iy)\varphi(y))\right| y^{\mathrm{Re}(s)} dy. \end{align*}$$

Therefore, $L_f(\varphi _s)\to 0$ as $\mathrm {Im}(s)\to \infty $ . From this, we have

$$ \begin{align*} f(iy)\varphi(y) &=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_f(\varphi_s) y^{-s}ds=\frac{1}{2\pi i}\int_{k-c-i\infty}^{k-c+i\infty} L_f(\varphi_s) y^{-s}ds\\ &=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_f(\varphi_{k-s}) y^{-k+s} ds, \end{align*} $$

and by Theorem 2.2, we see that

(2.4) $$ \begin{align} f(iy)\varphi(y) =\frac{i^k}{2\pi i}\rho(S)\int_{c-i\infty}^{c+i\infty} L_f(\varphi_{k-s}|_{2-k,\chi^{-1}} S)y^{-k+s}ds \end{align} $$

for any $y>0$ .

Since we have

$$\begin{align*}L_f(\varphi_{k-s}|_{2-k} S) =\int_0^\infty f(iy)(\varphi_{k-s}|_{2-k,\chi^{-1}} S)(y)dy =\int_0^\infty f(iy)\chi(S)\varphi\left(\frac 1y\right) y^{s-1} dy, \end{align*}$$

the Mellin inversion formula implies that

$$\begin{align*}f(iy)\chi(S)\varphi\left(\frac1y\right) =\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_f(\varphi_{k-s}|_{2-k,\chi^{-1}}S)y^{-s}dy \end{align*}$$

for all $c\in \mathbb {R}$ and $y>0$ . Therefore, we have

(2.5) $$ \begin{align} f\left(\frac{i}{y}\right)\chi(S)\varphi(y) =\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_f(\varphi_{k-s}|_{2-k,\chi^{-1}}S) y^{s} dy, \end{align} $$

and from (2.4) and (2.5), we see that

$$\begin{align*}f(iy)\varphi(y) = i^k y^{-k}\rho(S)\chi(S) f\left(\frac iy\right)\varphi(y) \end{align*}$$

for any $y>0$ . Since for each $y>0$ , there exists $\varphi \in S_c(\mathbb {R}_+)$ such $\varphi (y)\neq 0$ , we have

(2.6) $$ \begin{align} f(iy)= i^k y^{-k}\rho(S)\chi(S) f\left(\frac iy\right) \end{align} $$

for any $y>0$ . Since f is a holomorphic function, this implies that f satisfies

$$\begin{align*}f\left( -\frac{1}{\tau}\right) =\tau^k\chi(S)\rho(S) f(\tau) \end{align*}$$

for $\tau \in \mathbb {H}$ . Hence, f satisfies

$$\begin{align*}f|_{k,\chi,\rho}T = f \text{and}\ f|_{k,\chi,\rho}S = f. \end{align*}$$

Since T and S generates $\mathrm {SL}_2(\mathbb {Z})$ , we see that f is a weakly holomorphic modular form in $M^!_{k,\chi ,\rho }$ .

3 L-series of vector-valued harmonic weak Maass forms

In this section, we review basic definitions of vector-valued harmonic weak Maass forms and their L-series. We prove that the properties of L-series in Section 2 also hold in the case of vector-valued harmonic weak Maass forms. Moreover, we prove a converse theorem and a summation formula for vector-valued harmonic weak Maass forms.

Following [Reference Bruinier and Funke5, Reference Jin and Lim14], we introduce vector-valued harmonic weak Maass forms.

Definition 3.1 A vector-valued harmonic weak Maass form of weight k, multiplier system $\chi $ , and type $\rho $ on $\Gamma $ is a real-analytic vector-valued function $f=\sum _{j=1}^{m} f_j\mathbf {e}_j$ on $\mathbb {H}$ that satisfies the following conditions:

  1. (1) $f|_{k,\chi ,\rho }\gamma =f$ for all $\gamma =\left (\begin {smallmatrix} a&b\\c&d\end {smallmatrix}\right )\in \Gamma $ .

  2. (2) $\Delta _k f=0$ , where $\Delta _k:=-4v^2\frac {\partial }{\partial \tau }\frac {\partial } {\partial {\overline {\tau }}}+2kiv\frac {\partial }{\partial {\overline {\tau }}}$ is the weight k hyperbolic Laplacian and $\tau =u+iv\in \mathbb {H}$ .

  3. (3) It has a Fourier expansion of the form

    (3.1) $$ \begin{align} f(\tau)&= \sum_{j=1}^{m}\sum_{n\gg -\infty}c^+_{f,j}(n) e^{2\pi i (n+\kappa_{j})\tau}\mathbf{e}_j\\ &\nonumber\quad+\sum_{j=1}^{m} \sum_{n+\kappa_j< 0}c^-_{f,j}(n)\Gamma\left(1-k,-4\pi (n+\kappa_{j})v\right) e^{2\pi i (n+\kappa_{j})\tau}\mathbf{e}_j, \end{align} $$
    where $\Gamma (k,w)$ is the analytic continuation of the incomplete gamma function given by $\int _{w}^\infty e^{-t}t^{k-1}dt$ .

We use $H_{k,\chi ,\rho }$ to denote the space of such forms. We write $f^{+}$ (resp. $f^-$ ) for the first (resp. second) summation of (3.1) and call it the holomorphic (resp. non-holomorphic) part of f. By [Reference Bruinier and Funke5, Lemma 3.4], if $f\in H_{k,\chi ,\rho }$ with its Fourier expansion as in (3.1), then there is a constant $C>0$ such that the Fourier coefficients satisfy

$$ \begin{align*} c^+_{f,j}(n) &= O(e^{C\sqrt{n}}),\ n\to +\infty,\\ c^-_{f,j}(n) &= O(|n|^{k/2}),\ n\to-\infty. \end{align*} $$

Let $\mathcal {C}(\mathbb {R},\mathbb {C})$ be the space of piecewise smooth complex-valued functions on $\mathbb {R}$ . Suppose that $k\in \frac 12\mathbb {Z}$ and $f:\mathbb {H}\to \mathbb {C}^m$ is a vector-valued function on $\mathbb {H}$ given by the absolutely convergent series as in (3.1). Let $n_0\in \mathbb {N}$ be such that $f_j(\tau )$ are $O(e^{2\pi n_0 v})$ as $v=\mathrm {Im}(\tau )\to \infty $ for each $1\leq j\leq m$ . Let $\mathcal {F}_f$ be the space of functions $\varphi \in C(\mathbb {R},\mathbb {C})$ such that

  1. (1) $(\mathcal {L}\varphi )(s)$ converges absolutely for all s with $\mathrm {Re}(s)\geq -2\pi n_0$ ,

  2. (2) $(\mathcal \varphi _{2-k})(s)$ converges absolutely for all s with $\mathrm {Re}(s)>0$ ,

  3. (3) for each $1\leq j\leq m$ , the series

    (3.2) $$ \begin{align} &\sum_{n\gg-\infty} |c^+_{f,j}(n)| (\mathcal{L} |\varphi|)(2\pi (n+\kappa_j))\\ \nonumber & +\sum_{n+\kappa_j<0} |c^-_{f,j}(n)| (4\pi |n+\kappa_j|)^{1-k}\int_0^\infty\frac{(\mathcal{L}|\varphi_{2-k}|)(-2\pi (n+\kappa_j)(2t+1))}{(1+t)^k} dt \end{align} $$
    converges.

For $\varphi \in \mathcal {F}_f$ , we define the L-series of f by

(3.3) $$ \begin{align} & L_f(\varphi) :=\sum_{j=1}^m\sum_{n\gg-\infty} c^+_{f,j}(n) (\mathcal{L}\varphi) (2\pi (n+\kappa_j))\quad \mathbf{e}_j\\ &\quad +\sum_{j=1}^m\sum_{n+\kappa_j<0} c^-_{f,j}(n)(-4\pi (n+\kappa_j))^{1-k}\int_0^\infty\frac{(\mathcal{L}\varphi_{2-k})(-2\pi (n+\kappa_j)(2t+1))}{(1+t)^k} dt\quad \mathbf{e}_j.\nonumber \end{align} $$

We also define the following derivative

$$\begin{align*}(\delta_k f)(\tau) :=\tau\frac{\partial f}{\partial u}(\tau) +\frac{k}{2} f(\tau). \end{align*}$$

Then, we have

$$ \begin{align*} (\delta_k f)(\tau) &=\frac{k}{2} f(\tau) +\sum_{j=1}^m\sum_{n\gg-\infty} c^+_{f,j}(n) (2\pi i(n+\kappa_j)\tau)e^{2\pi i(n+\kappa_j)\tau}\quad\mathbf{e}_j\\ &\quad +\sum_{j=1}^m\sum_{n+\kappa_j<0} c^-_{f,j}(n) (2\pi i(n+\kappa_j))\Gamma(1-k, -4\pi (n+\kappa_j)v) e^{2\pi i(n+\kappa_j)\tau}\quad\mathbf{e}_j. \end{align*} $$

Let $\mathcal {F}_{\delta _k f}$ be the space of functions $\varphi \in C(\mathbb {R},\mathbb {C})$ such that

  1. (1) $(\mathcal {L}\varphi )(s)$ converges absolutely for all s with $\mathrm {Re}(s)\geq -2\pi n_0$ ,

  2. (2) $(\mathcal \varphi _{3-k})(s)$ converges absolutely for all s with $\mathrm {Re}(s)>0$ ,

  3. (3) for each $1\leq j\leq m$ the series

    (3.4) $$ \begin{align} \hspace{-1pc}&\sum_{n\gg-\infty} |c^+_{f,j}(n)(n+\kappa_j)| (\mathcal{L} |\varphi_2|)(2\pi (n+\kappa_j))\\ \nonumber & +\sum_{n+\kappa_j<0} |c^-_{f,j}(n)(n+\kappa_j)| (4\pi |n+\kappa_j|)^{1-k}\int_0^\infty\frac{(\mathcal{L}|\varphi_{3-k}|)(-2\pi (n+\kappa_j)(2t+1))}{(1+t)^k} dt \end{align} $$
    converges.

For $\varphi \in \mathcal {F}_{\delta _k f}$ , we define $L_{\delta _k f}(\varphi )$ by

(3.5) $$ \begin{align} \nonumber L_{\delta_k f}(\varphi) &:=\frac{k}{2}L_f(\varphi) -2\pi\sum_{j=1}^m\sum_{n\gg-\infty} c^+_{f,j}(n) (n+\kappa_j) (\mathcal{L}\varphi_2) (2\pi (n+\kappa_j))\quad \mathbf{e}_j\\ &\qquad -2\pi\sum_{j=1}^m\sum_{n+\kappa_j<0} c^-_{f,j}(n)(n+\kappa_j)(-4\pi (n+\kappa_j))^{1-k}\\ \nonumber &\qquad\qquad\times\int_0^\infty\frac{(\mathcal{L}\varphi_{3-k})(-2\pi (n+\kappa_j)(2t+1))}{(1+t)^k} dt\quad \mathbf{e}_j. \end{align} $$

Then, the series $L_f(\varphi )$ and $L_{\delta _k f}(\varphi )$ have integral representations.

Theorem 3.2 Let $f:\mathbb {H}\to \mathbb {C}^m$ be a vector-valued function on $\mathbb {H}$ as a series in (3.1).

  1. (1) For $\varphi \in \mathcal {F}_f$ , the L-series $L_f(\varphi )$ can be given by

    $$\begin{align*}L_f(\varphi) =\int_0^\infty f(iy)\varphi(y)dy. \end{align*}$$
  2. (2) For $\varphi \in \mathcal {F}_{\delta _k f}$ , we have

    $$\begin{align*}L_{\delta_k f}(\varphi) =\int_0^\infty (\delta_k f)(iy)\varphi(y) dy. \end{align*}$$

Proof We only prove (1) since the same proof works for (2). For the holomorphic part of f, we have

$$ \begin{align*} &\sum_{j=1}^m\sum_{n\gg-\infty} c^+_{f,j}(n) (\mathcal{L}\varphi_j)(2\pi (n+\kappa_j))\mathbf{e}_j\\ &=\sum_{j=1}^m\sum_{n\gg-\infty} c^+_{f,j}(n)\int_0^\infty e^{-2\pi (n+\kappa_j)t}\varphi_j(t)dt\mathbf{e}_j\\ &=\sum_{j=1}^m\left(\int_0^\infty f^+_j(it)\varphi_j(t) dt\right)\mathbf{e}_j. \end{align*} $$

The last equality follows from the fact that we can interchange the order of summation and integration since $\varphi \in \mathcal {F}_f$ .

For the non-holomorphic part of f, note that

$$\begin{align*}\Gamma(a, z) = z^a e^{-z}\int_0^\infty\frac{e^{-zt}}{(1+t)^{1-a}}dt, \end{align*}$$

is valid for $\mathrm {Re}(z)>0$ [Reference Olver, Lozier, Boisvert and Clark21, (8.6.5)]. Therefore, for $n+\kappa _j<0$ , we have

$$ \begin{align*} &\int_0^\infty\Gamma(1-k, -4\pi(n+\kappa_j) y) e^{-2\pi (n+\kappa_j) u}\varphi(y) dy\\ &=\int_0^\infty (-4\pi(n+\kappa_j) y)^{1-k} e^{4\pi (n+\kappa_j)y} e^{-2\pi (n+\kappa_j) y}\varphi(y)\int_0^\infty\frac{e^{4\pi(n+\kappa_j)yt}}{(1+t)^k} dtdy\\ &= (-4\pi(n+\kappa_j))^{1-k} \int_0^\infty\int_0^\infty y^{1-k}e^{2\pi(n+\kappa_j)y(2t+1)}\varphi(y)dy\frac{1}{(1+t)^k}dt\\ & = (-4\pi(n+\kappa_j))^{1-k}\int_0^\infty\frac{(\mathcal{L}\varphi_{2-k})(-2\pi (n+\kappa_j)(2t+1))}{(1+t)^k} dt. \end{align*} $$

Therefore, we obtain

$$ \begin{align*} &\sum_{j=1}^m\sum_{n+\kappa_j<0} c^-_{f,j}(n)(-4\pi (n+\kappa_j))^{1-k}\int_0^\infty\frac{(\mathcal{L}\varphi_{2-k})(-2\pi (n+\kappa_j)(2t+1))}{(1+t)^k} dt\quad \mathbf{e}_j\\ &=\sum_{j=1}^m\sum_{n+\kappa_j<0} c^-_{f,j}(n)\int_0^\infty\Gamma(1-k, -4\pi(n+\kappa_j)y) e^{-2\pi (n+\kappa_j)y}\varphi(y)dy\mathbf{e}_j\\ &=\int_0^\infty f^-(iy)\varphi(y)dy. \end{align*} $$

We now prove the functional equations of $L_f(\varphi )$ and $L_{\delta _k f}(\varphi )$ .

Theorem 3.3 Let f be a vector-valued harmonic weak Maass form in $H_{k,\chi ,\rho }$ . We assume that the series (3.2) and (3.4) converge. Then, we have the following functional equations:

$$\begin{align*}L_f(\varphi) = i^k\rho(S) L_f(\varphi|_{2-k,\chi^{-1}} S) \end{align*}$$

and

$$\begin{align*}L_{\delta_k f}(\varphi) = -i^k\rho(S) L_{\delta_k f}(\varphi|_{2-k,\chi^{-1}} S). \end{align*}$$

Proof For the first equality, note that since $f\in H_{k,\chi ,\rho }$ , we see that

$$\begin{align*}f(iy) = (iy)^{-k}\chi^{-1}(S)\rho(S)^{-1} f\left(i\frac1y\right) \end{align*}$$

for $y>0$ . Then, by Theorem 3.2, we have

$$ \begin{align*} L_f(\varphi) &=\int_0^\infty f(iy)\varphi(y)dy\\ &=\int_0^\infty f\left( i\frac 1y\right)\varphi\left(\frac 1y\right) y^{-2}dy\\ &=\int_0^\infty (iy)^k\chi(S)\rho(S) f(iy)\varphi\left(\frac 1y\right) y^{-2}dy\\ &= i^k\rho(S)\int_0^\infty f(iy) y^{k-2}\chi(S)\varphi\left(\frac 1y\right) dy\\ & = i^k\rho(S) L_f(\varphi|_{2-k,\chi^{-1}}S). \end{align*} $$

For the second equality, note that

$$ \begin{align*} (\delta_k(f|_k S))(\tau) &=\tau (-k)\tau^{-k-1}\chi^{-1}(S)\rho(S)^{-1} f\left(-\frac1\tau\right) +\tau\tau^{-k}\chi^{-1}(S)\rho(S)^{-1}\frac{\partial f}{\partial u}\left(-\frac 1\tau\right)\frac{1}{\tau^2}\\ &\quad+\frac k2\tau^{-k}\chi^{-1}(S)\rho(S)^{-1} f\left( -\frac 1\tau\right)\\ &= -\frac k2\tau^{-k}\chi^{-1}(S)\rho(S)^{-1} f\left( -\frac 1\tau\right) -\tau^{-k}\chi^{-1}(S)\rho(S)^{-1}\frac{\partial f}{\partial u}\left( -\frac 1\tau\right)\frac 1\tau\\ &= - (\delta_k(f)|_k S)(\tau). \end{align*} $$

Therefore, we have

$$\begin{align*}((\delta_k f)|S)(\tau) = -(\delta_k(f|_k S))(\tau) = -(\delta_k f)(\tau). \end{align*}$$

From this and Theorem 3.2, we see that

$$ \begin{align*} L_{\delta_k f}(\varphi) &=\int_0^\infty (\delta_k f)(iy)\varphi(iy) dy\\ &=\int_0^\infty (\delta_k f)\left( i\frac 1y\right)\varphi\left(\frac1y\right) y^{-2} dy\\ &= i^k\rho(S)\int_0^\infty (\delta_k f|_k S)(iy) (\varphi|_{2-k,\chi^{-1}}S)(y)dy\\ &= -i^k\rho(S)\int_0^\infty (\delta_k f)(iy) (\varphi_{2-k,\chi^{-1}}S)(y)dy\\ &=-i^k\rho(S) L_{\delta_k f}(\varphi|_{2-k,\chi^{-1}}S). \end{align*} $$

Recall that $\varphi _s(x) =\varphi (x) x^{s-1}$ . We define the series $L(s,f,\varphi )$ by

$$\begin{align*}L(s,f,\varphi) := L_f(\varphi_s). \end{align*}$$

Then, we prove that the series $L(s,f,\varphi )$ has an analytic continuation and satisfies a functional equation.

Theorem 3.4 Let $f\in H_{k,\chi ,\rho }$ , and $n_0\in \mathbb {N}$ be such that $f_j(\tau )$ are $O(e^{2\pi n_0 v})$ as $v=\mathrm {Im}(\tau )\to \infty $ for each $1\leq j\leq m$ . Suppose that $\varphi \in \mathcal {C}(\mathbb {R},\mathbb {C})$ is a non-zero function such that, for some $\epsilon>0$ , $\varphi (x)$ and $\varphi (x^{-1})$ are $o(e^{-2\pi (n_0+\epsilon )x})$ as $x\to \infty $ . Then the series $ L(s,f,\varphi ) $ converges absolutely for $\mathrm {Re}(s)>\frac 12$ , has an analytic continuation to all $s\in \mathbb {C}$ and satisfies the functional equation

$$\begin{align*}L(s,f,\varphi) = i^k\rho(S) L(1-s, f,\varphi|_{1-k,\chi^{-1}} S). \end{align*}$$

Proof By the growth of $\varphi $ , we see that $\mathcal {L}(|\varphi |^2)(y)$ converges absolutely for $y\geq -2\pi n_0$ . For $y>0$ and $s\in \mathbb {C}$ with $\mathrm {Re}(s)>\frac 12$ , Cauchy–Schwarz inequality implies that

$$\begin{align*}(\mathcal{L}|\varphi_s|)(y)\leq (\mathcal{L}(|\varphi|^2)(y))^{\frac12} y^{-\mathrm{Re}(s)+\frac12} (\Gamma(2\mathrm{Re}(s)-1))^{\frac12}. \end{align*}$$

Therefore, $\varphi _s\in \mathcal {F}_f$ for $\mathrm {Re}(s)>\frac 12$ .

Recall that

$$\begin{align*}f(iy) = (iy)^{-k}\chi^{-1}(S)\rho(S)^{-1} f\left(i\frac1y\right) \end{align*}$$

for $y>0$ . Therefore, we have

$$ \begin{align*} L(s, f,\varphi) &= L_f(\varphi_s) =\int_0^\infty f(iy)\varphi_s(y)dy\\ &=\int_0^\infty f(iy)\varphi(s) y^{s-1} dy\\ &=\int_1^\infty f(iy)\varphi(y)y^{s-1} dy +\int_0^1 f(iy)\varphi(y)y^{s-1}dy\\ &=\int_1^\infty f(iy)\varphi(y)y^{s-1} dy +\int_1^\infty f\left( i\frac1y\right)\varphi\left(\frac 1y\right) y^{1-s}y^{-2}dy\\ &=\int_1^\infty f(iy)\varphi(y)y^{s-1} dy + i^k\rho(S)\int_1^\infty f(iy)\left(\varphi|_{1-k,\chi^{-1}}S\right)(y) y^{-s}dy. \end{align*} $$

By the growth of $\varphi $ at $0$ and $\infty $ , we see that the integrals

$$\begin{align*}\int_1^\infty f(iy)\varphi(y)y^{s-1} dy \quad \text{and} \int_1^\infty f(iy)\left(\varphi|_{1-k,\chi^{-1}}S\right)(y) y^{-s}dy \end{align*}$$

are well-defined for all $s\in \mathbb {C}$ , and give holomorphic functions. Since $f\in H_{k,\chi ,\rho }$ , we obtain that $\rho (-I_2)\chi (-I_2) = (-1)^{-k} I_m$ . Therefore, we get the desired functional equation.

We now state the converse theorem in the case of vector-valued harmonic weak Maass forms.

Theorem 3.5 For each $1\leq j\leq m$ , let $(c^+_{f,j}(n))_{n\geq -n_0}$ and $(c^-_{f,j}(n))_{n+\kappa _j<0}$ be sequences of complex numbers such that $c^+_{f,j}(n), c^-_{f,j}(n) = O(e^{C\sqrt {|n|}})$ as $|n|\to \infty $ , for some $C>0$ . For each $\tau \in \mathbb {H}$ , set

$$\begin{align*}f(\tau) & :=\sum_{j=1}^m\sum_{n=-n_0}^\infty c^+_{f,j}(n)e^{2\pi i(n+\kappa_j)\tau}\mathbf{e}_j \\ &\quad +\sum_{j=1}^m\sum_{n+\kappa_j<0}c^-_{f,j}(n)\Gamma(1-k, -4\pi (n+\kappa_j)v)e^{2\pi i(n+\kappa_j)\tau}\mathbf{e}_j. \end{align*}$$

Suppose that for each $\varphi \in S_c(\mathbb {R}_+)$ , the functions $L_f(\varphi )$ and $L_{\delta _k f}(\varphi )$ satisfy

$$\begin{align*}L_f(\varphi) = i^k\rho(S) L_f(\varphi|_{2-k,\chi^{-1}} S) \end{align*}$$

and

$$\begin{align*}L_{\delta_k f}(\varphi) = -i^k\rho(S) L_{\delta_k f}(\varphi|_{2-k,\chi^{-1}}S). \end{align*}$$

Then, f is a vector-valued harmonic weak Maass form in $H_{k,\chi ,\rho }$ .

Proof By the bounds for $c^+_{f,j}(n)$ and $c^-_{f,j}(n)$ , we see that $f_j(\tau )$ and $(\delta _k(f))_j$ converge absolutely to smooth functions on $\mathbb {H}$ for $1\leq j\leq m$ . Note that $\varphi _s\in S_c(\mathbb {R}_+)$ for any $s\in \mathbb {C}$ and $\varphi \in S_c(\mathbb {R}_+)$ . Since $\varphi \in S_c(\mathbb {R}_+)$ , there exist $0<c_1<c_2$ and $c_3>0$ such that $\mathrm {Supp}(\varphi )\subset [c_1, c_2]$ and $|\varphi (y)|\leq c_3$ for any $y>0$ . Then, for each $1\leq j\leq m$ and $n+\kappa _j>0$ , we have

$$ \begin{align*} & |c^+_{f,j}(n)| (\mathcal{L}|\varphi_s|) (2\pi (n+\kappa_j)) \\ &\quad \leq c_3 |c^+_{f,j}(n)| e^{-2\pi (n+\kappa_j)c_1} (c_2-c_1)\max\{c_1^{\mathrm{Re}(s)-1}, c_2^{\mathrm{Re}(s)-1}\}. \end{align*} $$

This implies that for each $1\leq j\leq m$ , we have

$$ \begin{align*} & \sum_{n\in\mathbb{Z}\atop n+\kappa_j>0} |c^+_{f,j}(n)| (\mathcal{L}|\varphi_s|)(2\pi (n+\kappa_j)) \\ &\quad\leq c_3(c_2-c_1)\max\{c_1^{\mathrm{Re}(s)-1}, c_2^{\mathrm{Re}(s)-1}\}\sum_{n\in\mathbb{Z}\atop n+\kappa_j>0} |c^+_{f,j}(n)| e^{-2\pi (n+\kappa_j) c_1}. \end{align*} $$

For each $1\leq j\leq m$ and $n+\kappa _j<0$ , we have

$$ \begin{align*} (\mathcal{L}|\varphi_{s+1-k}|)(-2\pi (n+\kappa_j)(2t+1)) &\ll\int_{c_1}^{c_2} e^{2\pi(n+\kappa_j)(2t+1)} y^{\mathrm{Re}(s)-k} dy\\ &\ll e^{2\pi(n+\kappa_j)c_1(2t+1)}\max\{c_1^{\mathrm{Re}(s)-k}, c_2^{\mathrm{Re}(s)-k}\}. \end{align*} $$

This implies that

$$ \begin{align*} &\sum_{n+\kappa_j<0} |c_{f,j}^-(n)| |4\pi (n+\kappa_j)|^{1-k}\int_0^\infty\frac{(\mathcal{L}|\varphi_{s+1-k})(-2\pi (n+\kappa_j)(2t+1)}{(1+t)^k} dt\\ & \quad \ll\max\{c_1^{\mathrm{Re}(s)-k}, c_2^{\mathrm{Re}(s)-k}\}|4\pi (n+\kappa_j)|^{1-k} \\ &\quad \times \int_0^\infty\frac{e^{-4\pi t c_1 n_1}}{(1+t)^k}dt\sum_{n+\kappa_j<0} e^{2\pi (n+\kappa_j)c_1} |c_{f,j}^-(n)|, \end{align*} $$

where $n_1$ is defined by

$$\begin{align*}n_1 := \begin{cases} 1 &\text{if } \kappa_j = 0,\\ \kappa_j &\text{if } \kappa_j\neq0. \end{cases} \end{align*}$$

Therefore, $\varphi _s\in \mathcal {F}_f$ , and $L_f(\varphi _s)$ is an analytic function on $s\in \mathbb {C}$ by Weierstrass theorem. In the same way, we see that $L_{\delta _k f}(\varphi _s)$ is an analytic function for $s\in \mathbb {C}$ .

Recall that by Theorem 3.2, we have

$$\begin{align*}L_f(\varphi_s) =\int_0^\infty f(iy)\varphi_s(y) dy \end{align*}$$

and

$$\begin{align*}L_{\delta_k f}(\varphi) =\int_0^\infty (\delta_k f)(iy)\varphi(y) dy. \end{align*}$$

By the Mellin inversion formula, we have

$$\begin{align*}f(iy)\varphi(y) =\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_f(\varphi_s) y^{-s} ds \end{align*}$$

and

$$\begin{align*}(\delta_k f)(iy)\varphi(y) =\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_{\delta_k f}(\varphi_s) y^{-s}ds \end{align*}$$

for all $c\in \mathbb {R}$ and $y>0$ .

By integration by parts, we see that for each $1\leq j\leq m$ ,

$$\begin{align*}|\langle L_f(\varphi_s),\mathbf{e}_j\rangle |\leq\frac{1}{|s|}\int_0^\infty\left|\frac{d}{dy} (f_j(iy)\varphi(y))\right| y^{\mathrm{Re}(s)} dy. \end{align*}$$

Therefore, $L_f(\varphi _s)\to 0$ as $\mathrm {Im}(s)\to \infty $ . The corresponding fact for $L_{\delta _k f}(\varphi _s)$ can be proved in the same way. From this, we have

$$ \begin{align*} f(iy)\varphi(y) &=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_f(\varphi_s) y^{-s}ds=\frac{1}{2\pi i}\int_{k-c-i\infty}^{k-c+i\infty} L_f(\varphi_s) y^{-s}ds\\ &=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_f(\varphi_{k-s}) y^{-k+s} ds, \end{align*} $$

and by Theorem 3.3, we see that

(3.6) $$ \begin{align} f(iy)\varphi(y) =\frac{i^k}{2\pi i}\rho(S)\int_{c-i\infty}^{c+i\infty} L_f(\varphi_{k-s}|_{2-k,\chi^{-1}} S)y^{-k+s}ds \end{align} $$

for any $y>0$ . In the same way, we have

$$ \begin{align*} (\delta_k f)(iy)\varphi(y) &=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_{\delta_k(f)}(\varphi_{k-s}) y^{-k+s}ds\\ &= -\frac{i^k}{2\pi i}\rho(S)\int_{c-i\infty}^{c+i\infty} L_{\delta_k(f)}(\varphi_{k-s}|_{2-k,\chi^{-1}}S)y^{-k+s}ds \end{align*} $$

for any $y>0$ .

Since we have

$$\begin{align*}L_f(\varphi_{k-s}|_{2-k} S) =\int_0^\infty f(iy)(\varphi_{k-s}|_{2-k,\chi^{-1}} S)(y)dy =\int_0^\infty f(iy)\chi(S)\varphi\left(\frac 1y\right) y^{s-1} dy, \end{align*}$$

the Mellin inversion formula implies that

$$\begin{align*}f(iy)\chi(S)\varphi\left(\frac1y\right) =\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_f(\varphi_{k-s}|_{2-k,\chi^{-1}}S)y^{-s}dy \end{align*}$$

for all $c\in \mathbb {R}$ and $y>0$ . Therefore, we have

(3.7) $$ \begin{align} f\left(\frac{i}{y}\right)\chi(S)\varphi(y) =\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_f(\varphi_{k-s}|_{2-k,\chi^{-1}}S) y^{s} dy, \end{align} $$

and from (3.6) and (3.7), we see that

$$\begin{align*}f(iy)\varphi(y) = i^k y^{-k}\rho(S)\chi(S) f\left(\frac iy\right)\varphi(y) \end{align*}$$

for any $y>0$ . Since for each $y>0$ , there exists $\varphi \in S_c(\mathbb {R}_+)$ such $\varphi (y)\neq 0$ , we have

(3.8) $$ \begin{align} f(iy)= i^k y^{-k}\rho(S)\chi(S) f\left(\frac iy\right) \end{align} $$

for any $y>0$ . In the same way, we see that

$$ \begin{align*} L_{\delta_k f}(\varphi_{k-2}|_{2-k,\chi^{-1}}S) =\int_0^\infty (\delta_k f)(iy)\chi(S)\varphi\left(\frac 1y\right) y^{s-1}dy, \end{align*} $$

and hence we have

$$ \begin{align*} (\delta_k f)(iy)\left(i\frac 1y\right)\chi(S)\varphi(y) =\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} L_{\delta_k f}(\varphi_{k-s}|_{2-k,\chi^{-1}}S)y^s dy. \end{align*} $$

Therefore, we obtain

(3.9) $$ \begin{align} (\delta_k f)(iy) = -i^k y^{-k}\rho(S)\chi(S) (\delta_k f)\left( i\frac 1y\right). \end{align} $$

We now define

$$\begin{align*}F(\tau) = f(\tau) - (f|_{k,\chi,\rho}S)(\tau) \end{align*}$$

for $\tau \in \mathbb {H}$ . By (3.8) and (3.9), we see that $F(iv) = 0$ and $\frac {\partial }{\partial u} F(iv) = 0$ . This implies that $F\equiv 0$ since F is an eigenfunction of the Laplace operator. Therefore,

$$\begin{align*}f = f|_{k,\chi,\rho} S. \end{align*}$$

Since T and S generates $\mathrm {SL}_2(\mathbb {Z})$ , we see that f is a harmonic weak Maass form in $H_{k,\chi ,\rho }$ .

We define the operator $\xi _{2-k}$ by

$$\begin{align*}\xi_{2-k}:=2iv^{2-k}\overline{\frac{\partial}{\partial\overline{\tau}}}. \end{align*}$$

Then, it defines a surjective map [Reference Bruinier and Funke5, Proposition 3.2]

$$ \begin{align*} \xi_{2-k}: H_{2-k,\chi,\rho}\to S_{k,\overline{\chi},\overline{\rho}}. \end{align*} $$

Note that if $f\in S_{k,\overline {\chi },\overline {\rho }}$ , then f has a Fourier expansion of the form

(3.10) $$ \begin{align} f(\tau) =\sum_{j=1}^m\sum_{n-\kappa_j>0} a_{f,j}(n)e^{2\pi i(n-\kappa_j)\tau}\mathbf{e}_j. \end{align} $$

Let $\mathcal {C}_c^\infty (\mathbb {R},\mathbb {R})$ be the space of piecewise smooth, compactly supported functions on $\mathbb {R}$ with values in $\mathbb {R}$ . Then, we have the following summation formula for harmonic weak Maass forms.

Theorem 3.6 Let $k\in 2\mathbb {N}$ and let $f\in S_{k,\bar {\chi },\bar {\rho }}$ with Fourier expansion as in (3.10). Suppose that g is an element of $H_{2-k,\chi ,\rho }$ such that $\xi _{2-k}(g) = f$ with Fourier expansion

$$\begin{align*}g(\tau) &=\sum_{j=1}^m\sum_{n\gg-\infty} c_{g,j}^+(n) e^{2\pi i(n+\kappa_j)\tau}\mathbf{e}_j \\&\quad +\sum_{j=1}^m\sum_{n+\kappa_j<0} c_{g,j}^-(n)\Gamma(k-1, -4\pi (n+\kappa_j) v) e^{2\pi i(n+\kappa_j)\tau}\mathbf{e}_j. \end{align*}$$

For every $\varphi \in \mathcal {C}_c^\infty $ and $1\leq j\leq m$ , we have

$$ \begin{align*} &\sum_{n\gg-\infty} c_{g,j}^+(n)\int_0^\infty\varphi(y)\left( e^{-2\pi (n+\kappa_j)y} -(-iy)^{k-2}e^{-2\pi(n+\kappa_j)/y}\right)dy\\ &=\sum_{l=0}^{k-2}\sum_{n-\kappa_j>0}\overline{a_{f,j}(n)}\bigg(\frac{(k-2)!}{l!} (4\pi (n-\kappa_j))^{1-k+l}\int_0^\infty e^{-2\pi(n-\kappa_j)y}y^l\varphi(y) dy\\ &+\frac{2^{l+1}}{(k-1)} (8\pi (n-\kappa_j))^{-\frac{k}{2}}\int_0^\infty e^{-\pi (n-\kappa_j)y}y^{\frac k2 - 1}\varphi(y) M_{1-\frac k2 + l,\frac{k-1}2}(2\pi (n-\kappa_j)y)dy\bigg), \end{align*} $$

where $M_{\kappa ,\mu }(z)$ denotes the Whittaker hypergeometric function (see [Reference Olver, Lozier, Boisvert and Clark21, Section 13.14]).

Proof Note that $\mathcal {C}_c^\infty (\mathbb {R},\mathbb {R})\subset \mathcal {F}_f\cap \mathcal {F}_g$ . Since $a_{f,j}(n) = -\overline {c_{g,j}^-(n)}(4\pi (n-\kappa _j))^{k-1}$ for $n-\kappa _j>0$ , by Theorem 3.2, we have

$$ \begin{align*} L_g(\varphi) &=\int_0^\infty g^+(iy)\varphi(y)dy -\overline{L_f(\Phi(\varphi))}, \end{align*} $$

where $\Phi (\varphi )$ is defined by

$$\begin{align*}\Phi(\varphi):=\mathcal{L}^{-1}\left( (2u)^{1-k}\int_0^\infty\Gamma(k-1, 2uy)e^{uy}\varphi(y)dy\right). \end{align*}$$

Recall that $L_g(\varphi )$ satisfies a functional equation

$$\begin{align*}L_g(\varphi) = i^{2-k}\rho(S) L_g(\varphi|_{k,\chi^{-1}}S). \end{align*}$$

Therefore, we have

$$\begin{align*} & \int_0^\infty g^+(iy)\varphi(y)dy - i^{2-k}\rho(S)\int_0^\infty g^+(iy) (\varphi|_{k,\chi^{-1}}S)(y)dy \\ &\quad =\overline{L_f(\Phi(\varphi))} -i^{2-k}\rho(S)\overline{L_f(\Phi(\varphi|_{k,\chi^{-1}}S))}. \end{align*}$$

Note that by the functional equation of $L_f(\varphi )$ , we have

$$ \begin{align*} i^{2-k}\rho(S)\overline{L_f(\Phi(\varphi|_{k,\chi^{-1}}S))} &= i^{2-k}\rho(S)\overline{i^k\overline{\rho(S)} L_f(\Phi(\varphi|_{k,\chi^{-1}}S)|_{2-k,\chi}S)}\\ &= -\rho(-I)\overline{ L_f(\Phi(\varphi|_{k,\chi^{-1}}S)|_{2-k,\chi}S)}. \end{align*} $$

By [Reference Erdélyi, Magnus, Oberhettinger and Tricomi12, 4.1 (25)], we have

$$ \begin{align*} \mathcal{L}\left(u^{v-1} f\left(\frac 1u\right)\right)(x) = x^{-\frac12 v}\int_0^\infty u^{\frac12 v}J_v\left(2u^{\frac12}x^{\frac12}\right)\mathcal{L}(f)(u)du \end{align*} $$

for $\mathrm {Re}(v)>-1$ , where $J_v(z)$ denotes the Bessel function defined in [Reference Olver, Lozier, Boisvert and Clark21, Section 10.2.2]. Therefore, we see that

(3.11) $$ \begin{align} &\mathcal{L}(\Phi(\varphi|_{k,\chi^{-1}}S)|_{2-k,\chi^{-1}} S)(2\pi (n-\kappa_j)) \nonumber \\ &=\mathcal{L}\left(\chi^{-1}(S) x^{k-2}\mathcal{L}^{-1}\left((2u)^{1-k}\int_0^\infty\Gamma(k-1, 2uy) e^{uy}\varphi\left(\frac 1y\right)\chi(S) y^{-k} dy\right)\left(\frac 1x\right)\right) \nonumber \\ &\quad\times (2\pi (n-\kappa_j)\nonumber \\ &= (2\pi (n-\kappa_j))^{-\frac12(k-1)}\chi^{-1}(S)\int_0^\infty u^{\frac12 (k-1)} J_{k-1}\left(2u^{\frac12}(2\pi (n-\kappa_j))^{\frac12}\right)\nonumber \\ &\quad\times (2u)^{1-k}\int_0^\infty\Gamma(k-1, 2uy) e^{uy}\varphi\left(\frac 1y\right)\chi(S) y^{-k}dydu\nonumber \\ &= (2\pi (n-\kappa_j))^{-\frac12(k-1)}\chi^{-1}(S)\int_0^\infty u^{\frac12 (k-1)} J_{k-1}\left(2u^{\frac12}(2\pi (n-\kappa_j))^{\frac12}\right)\nonumber \\ &\quad\times (2u)^{1-k}\int_0^\infty\Gamma(k-1, 2u/y) e^{u/y}\varphi\left( y\right)\chi(S) y^{k-2}dydu \nonumber \\ &= (8\pi (n-\kappa_j))^{\frac 12 (1-k)}\int_0^\infty\varphi(y)y^{k-2} \nonumber \\ & \quad \times \int_0^\infty u^{\frac12 (1-k)} J_{k-1}\left(\sqrt{8\pi (n-\kappa_j) u}\right)\Gamma(k-1, 2u/y)e^{u/y} dudy. \nonumber\\ \end{align} $$

Note that by [Reference Olver, Lozier, Boisvert and Clark21, (8.4.8)] we have

$$\begin{align*}\Gamma(n+1, z) = n! e^{-z}\sum_{l=0}^n\frac{z^l}{l!}. \end{align*}$$

Therefore, (3.11) is equal to

$$ \begin{align*} &(8\pi (n-\kappa_j))^{\frac12 (1-k)} (k-2)! \\ &\qquad \times\sum_{l=0}^{k-2}\frac{2^l}{l!}\int_0^\infty\varphi(y)y^{k-2-l}\int_0^\infty u^{\frac12 (1-k)+l} J_{k-1}\left(\sqrt{8\pi (n-\kappa_j) u}\right) e^{-u/y} dudy\\ &\quad = (8\pi (n-\kappa_j))^{\frac12 (1-k)} (k-2)!\\ &\qquad\times\sum_{l=0}^{k-2}\frac{2^{l+1}}{l!}\int_0^\infty\varphi(y)y^{k-2-l}\int_0^\infty u^{2-k+2l} J_{k-1}\left(\sqrt{8\pi (n-\kappa_j) } u\right) e^{-u^2/y} dudy. \end{align*} $$

By [Reference Erdélyi, Magnus, Oberhettinger and Tricomi12, (8.4.8)], we have

$$\begin{align*}\int_0^\infty e^{-\beta^2 x^2} J_v(ax) x^{s-1}dx =\frac{\Gamma\left(\frac 12v +\frac12 s\right)}{a\beta^{s-1}\Gamma(v+1)} e^{-\frac{a^2}{8\beta^2}} M_{\frac12 s-\frac12,\frac12 v}\left(\frac{a^2}{4\beta^2}\right) \end{align*}$$

for $|\mathrm {arg}\beta |<\frac {\pi }{4}$ and $\mathrm {Re}(s)> -\mathrm {Re}(v)$ . Therefore, (3.11) is equal to

$$ \begin{align*} \frac{(8\pi (n-\kappa_j))^{\frac {-k}{2}}}{k-1}\sum_{l=0}^{k-2} 2^{l+1}\int_0^\infty\varphi(y)y^{\frac k2-1} e^{-\pi (n-\kappa_j)y} M_{1+l-\frac k2,\frac12 (k-1)}(2\pi (n-\kappa_j)y) dy. \end{align*} $$

We can also see that

$$ \begin{align*} &\mathcal{L}(\Phi(\varphi))(2\pi(n-\kappa_j))\\ &\quad = (4\pi(n-\kappa_j))^{1-k}\int_0^\infty\Gamma(k-1, 4\pi(n-\kappa_j)y)e^{2\pi(n-\kappa_j)y}\varphi(y)dy\\ &\quad=\sum_{l=0}^{k-2}\frac{(k-2)!}{l!} (4\pi (n-\kappa_j))^{1-k+l}\int_0^\infty e^{-2\pi(n+\kappa_j)y} y^l\varphi(y) dy.\\[-34pt] \end{align*} $$

4 L-series of harmonic Maass Jacobi forms

In this section, we consider the case of Jacobi forms and prove a converse theorem as well. We review basic notions of Jacobi forms (for more details, see [Reference Choi and Lim7, Section 3.1] and [Reference Eichler and Zagier11, Section 5]).

Let k be a positive even integer and m be a positive integer. From now on, we use the notation $\tau = u+iv\in \mathbb {H}$ and $z = x+iy\in \mathbb {C}$ . Let F be a complex-valued function on $\mathbb {H}\times \mathbb {C}$ . For $\gamma =\left (\begin {smallmatrix} a&b\\c&d\end {smallmatrix}\right )\in \mathrm {SL}_2(\mathbb {Z}) , X = (\lambda ,\mu )\in \mathbb {Z}^2$ , we define

$$\begin{align*}(F|_{k,m}\gamma)(\tau,z) := (c\tau+d)^{-k}e^{-2\pi im\frac{cz^2}{c\tau+d}}F(\gamma(\tau,z))\end{align*}$$

and

$$\begin{align*}(F|_m X)(\tau,z) :=e^{2\pi i m (\lambda^2\tau + 2\lambda z)}F(\tau,z+\lambda\tau+\mu),\end{align*}$$

where $\gamma (\tau ,z) = (\frac {a\tau +b}{c\tau +d},\frac {z}{c\tau +d})$ .

We now define a Jacobi form.

Definition 4.1 A weakly holomorphic Jacobi form of weight k and index m on $\mathrm {SL}_2(\mathbb {Z})$ is a holomorphic function F on $\mathbb {H}\times \mathbb {C}$ satisfying

  1. (1) $F|_{k,m}\gamma =F$ for every $\gamma \in \mathrm {SL}_2(\mathbb {Z})$ ,

  2. (2) $F|_m X = F$ for every $X\in \mathbb {Z}^2$ ,

  3. (3) F has the Fourier expansion of the form

    (4.1) $$ \begin{align} F(\tau,z) = \sum_{\substack{l, r\in\mathbb{Z}\\ 4ml - r^2\gg -\infty}}a_F(l,r)e^{2\pi il\tau}e^{2\pi irz}. \end{align} $$

We denote by $J^!_{k,m}$ the space of all weakly holomorphic Jacobi forms of weight k and index m on $\mathrm {SL}_2(\mathbb {Z})$ . If a Jacobi form satisfies the condition $a(l,r)\neq 0$ only if $4ml - r^2\geq 0$ (resp. $4ml-r^2>0$ ), then it is called a Jacobi form (resp. Jacobi cusp form). We denote by $J_{k,m}$ (resp. $S_{k,m}$ ) the space of all Jacobi forms (resp., Jacobi cusp forms) of weight k and index m on $\mathrm {SL}_2(\mathbb {Z})$ .

We now recall some definitions and facts about harmonic Maass–Jacobi forms, which were introduced in [Reference Bringmann, Raum and Richter3] and [Reference Bringmann and Richter4]. The Casimir operators $\mathcal {C}_{k,m}$ are defined by

$$ \begin{align*} \mathcal{C}_{k,m} &:=-2(\tau-\overline{\tau})^2\partial_{\tau\overline{\tau}}-(2k-1)(\tau-\overline{\tau})\partial_{\overline{\tau}}+\frac{(\tau-\overline{\tau})^2}{4\pi i m}\partial_{\tau z z}+\frac{k(\tau-\overline{\tau})}{4\pi i m}\partial_{z\overline{z}}\\ &\quad +\frac{(\tau-\overline{\tau})(z-\overline{z})}{4\pi i m}\partial_{zz\overline{z}}-2(\tau-\overline{\tau})(z-\overline{z})\partial_{\tau\overline{z}}+(1-k)(z-\overline{z})\partial_{\overline{z}}\\ &\quad +\frac{(\tau-\overline{\tau})^2}{4\pi i m}\partial_{\tau\overline{z}\overline{z}}+\left(\frac{(z-\overline{z})^2}{2}+\frac{k(\tau-\overline{\tau})}{4\pi i m}\right)\partial_{\overline{z}\overline{z}}+\frac{(\tau-\overline{\tau})(z-\overline{z}) }{4\pi i m}\partial_{z\overline{z}\overline{z}}. \end{align*} $$

Definition 4.2 Let $F:\mathbb {H}\times \mathbb {C}\to \mathbb {C}$ be a function that is real-analytic in $\tau \in \mathbb {H}$ and holomorphic in $z\in \mathbb {C}$ . Then, F is called a harmonic Maass–Jacobi form of weight k and index m on $\mathrm {SL}_2(\mathbb {Z})$ if the following conditions are satisfied:

  1. (1) $F|_{k,m}\gamma =F$ for every $\gamma \in \mathrm {SL}_2(\mathbb {Z})$ .

  2. (2) $F|_m X = F$ for every $X\in \mathbb {Z}^2$ .

  3. (3) $\mathcal {C}_{k,m}(F)=0$ .

  4. (4) There is a function

    $$\begin{align*}P_{F}(\tau,z) =\sum_{l,r\in\mathbb{Z}\atop 4ml-r^2\leq 0} c^+_{F}(4ml-r^2) e^{2\pi il\tau} e^{2\pi irz} \end{align*}$$
    such that there are only finitely many $4ml-r^2\leq 0$ such that $c^+_{F}(4ml-r^2)\neq 0$ and $F(\tau ,z)-P_{F}(\tau ,z)=O(e^{-hv}e^{2\pi my^2/v})$ as $v\rightarrow \infty $ for some $h>0$ .

We use $\hat {J}_{k,m}$ to denote the space of such forms. Any $F\in \hat {J}_{k,m}$ has a Fourier expansion of the form

$$\begin{align*} F(\tau,z) &=\sum_{l,r\in\mathbb{Z}\atop 4ml-r^2\gg -\infty} c^+_{F}(l,r)e^{2\pi il\tau} e^{2\pi irz} \nonumber \\ &\quad +\sum_{l,r\in\mathbb{Z}\atop 4ml-r^2>0} c^-_{F}(l,r)\Gamma\left(1-k,\frac{(4ml-r^2)\pi v}{m}\right)e^{2\pi il\tau} e^{2\pi irz}. \end{align*}$$

A harmonic Maass–Jacobi form has the theta decomposition (see [Reference Bringmann, Raum and Richter3, Section 5], [Reference Bringmann and Richter4, Section 6], and [Reference Eichler and Zagier11, Section 5])

(4.2) $$ \begin{align} F(\tau,z)=\sum_{j=1}^{2m}F_j(\tau)\theta_{m,j}(\tau,z), \end{align} $$

where $\theta _{m,j}$ is defined by

$$\begin{align*}\theta_{m,j}(\tau,z):=\sum_{r\equiv j\ \pmod{2m}} e^{\pi ir^2/(2m)} e^{2\pi irz}. \end{align*}$$

Moreover, $\sum _{j=1}^{2m} F_j\mathbf {e}_j$ is a vector-valued harmonic weak Maass form. To explain this, we recall the definition of metaplectic groups. The metaplectic group $\mathrm {Mp}_2(\mathbb {R})$ consists of pairs $(g,\omega (\tau ))$ , where $g=\left (\begin {smallmatrix} a&b\\c&d\end {smallmatrix}\right )\in \mathrm {SL}_2(\mathbb {R})$ and $\omega :\mathbb {H}\to \mathbb {C}$ is a holomorphic function satisfying $\omega (\tau )^2= c\tau +d$ , with group law

$$\begin{align*}(g,\omega(\tau))(g',\omega'(\tau)):=(gg', (\omega\circ g')(\tau)\omega'(\tau)). \end{align*}$$

We use $\mathrm {Mp}_2(\mathbb {Z})$ to denote the inverse image of $\mathrm {SL}_2(\mathbb {Z})$ in $\mathrm {Mp}_2(\mathbb {R})$ . Let m be a positive integer. We also recall the Weil representation $\rho _m:\mathrm {Mp}_2(\mathbb {Z})\to \mathrm {GL}_{2m}(\mathbb {C})$ given by

$$ \begin{align*} &\rho_m(\tilde{T})\mathbf{e}_l:=e_{4m}(l^2)\mathbf{e}_l,\\ &\rho_m(\tilde{S})\mathbf{e}_l:=\frac{1}{\sqrt{2im}}\sum_{l'=1}^{2m}e_{2m}(-ll')\mathbf{e}_{l'}, \end{align*} $$

where we use the notation $e_{m}(w):=e^{\frac {2\pi i w}{m}}$ . Here, $\tilde {T}:=\big (\left (\begin {smallmatrix} 1&1\\0&1\end {smallmatrix}\right ) ,1\big )$ and $\tilde {S}:=\big (\left (\begin {smallmatrix} 0&{-1}\\1&0\end {smallmatrix}\right ),\sqrt {\tau }\big )$ are two generators of $\mathrm {Mp}_2(\mathbb {Z})$ . Throughout this article, we use the convention that $\sqrt {\tau }$ is chosen so that $\arg (\sqrt {\tau })\in (-\pi /2,\pi /2]$ . The map

$$\begin{align*}\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)\mapsto\widetilde{\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)} = (\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right),\sqrt{c\tau+d})\end{align*}$$

defines a locally isomorphic embedding of $\mathrm {SL}_2(\mathbb {R})$ into $\mathrm {Mp}_2(\mathbb {R})$ . We then define a representation $\rho ^{\prime }_{m} :\mathrm {SL}_2(\mathbb {Z})\to \mathrm {GL}_{2m}(\mathbb {C})$ by

$$\begin{align*}\rho_{m}'(\gamma) :=\rho_m(\widetilde{\gamma})\chi_\eta(\gamma)\end{align*}$$

for $\gamma \in \mathrm {SL}_2(\mathbb {Z})$ . It is known ([Reference Choi and Lim7], p.281) that $\rho _m'$ is unitary representation of $\mathrm {SL}_2(\mathbb {Z})$ . The theta decomposition induces an isomorphism $\phi _{k,m}$ between $H_{k-\frac 12,\overline {\rho _m},\overline {\chi _\eta }}$ and $\hat {J}_{k,m}$ (see [Reference Bringmann, Raum and Richter3, Section 5] and [Reference Cho and Choie6]):

$$\begin{align*}F\mapsto\sum_{j=1}^{2m} F_j(\tau)\theta_{m,j}(\tau,z), \end{align*}$$

where $\chi _\eta $ is the eta-multiplier system defined by

$$\begin{align*}\chi_\eta(\gamma) :=\frac{\eta(\gamma\tau)}{\sqrt{c\tau+d}\quad \eta(\tau)} \end{align*}$$

for $\gamma =\left (\begin {smallmatrix} a&b\\c&d\end {smallmatrix}\right )\in \mathrm {SL}_2(\mathbb {Z})$ .

Let F be a Jacobi cusp form $F\in S_{k,m}$ with its Fourier expansion

$$\begin{align*}F(\tau,z) = \sum_{\substack{l, r\in\mathbb{Z}\\ 4ml - r^2>0}}a_F(l,r)e^{2\pi il\tau}e^{2\pi irz}. \end{align*}$$

Then, $F_j$ has the Fourier expansion

$$\begin{align*}F_j(\tau) =\sum_{\substack{n>0\\ n+j^2\equiv 0\pmod{4m}}} a_F\left(\frac{n+j^2}{4m}, j\right)e^{2\pi in\tau/(4m)}. \end{align*}$$

We define the partial L-series of F by

$$\begin{align*}L(F,j,s) :=\sum_{\substack{n>0\\ n+j^2\equiv 0\pmod{4m}}}\frac{a_F\left(\frac{n+j^2}{4m}, j\right)} {\left(\frac{n}{4m}\right)^{s}} \end{align*}$$

for $1\leq j\leq 2m$ . This L-series was studied in [Reference Berndt1, Reference Choi and Lim7, Reference Lim and Raji17, Reference Lim and Raji18].

We now consider L-series of harmonic Maass Jacobi forms. Let $F\in \hat {J}_{k,m}$ . Then, it has the theta decomposition as in (4.3), and $F_j$ has the Fourier expansion

$$ \begin{align*} F_j(\tau) &=\sum_{n\gg-\infty\atop n+j^2\equiv 0\pmod{4m}} c^+_{F}\left(\frac{n+j^2}{4m}, j\right) e^{2\pi in\tau/(4m)}\\ &\quad +\sum_{n<0\atop n+j^2\equiv 0\pmod{4m}} c^-_F\left(\frac{n+j^2}{4m}, j\right)\Gamma\left(\frac32-k, -\frac{-\pi nv}{m}\right) e^{2\pi in\tau/(4m)}. \end{align*} $$

Let $n_0\in \mathbb {N}$ be such that $F_j(\tau )$ are $O(e^{2\pi n_0 v})$ as $v=\mathrm {Im}(\tau )\to \infty $ for each $1\leq j\leq m$ . Let $\mathcal {F}_F$ be the space of functions $\varphi \in \mathcal {C}(\mathbb {R},\mathbb {C})$ such that

  1. (1) $(\mathcal {L}\varphi )(s)$ converges absolutely for all s with $\mathrm {Re}(s)\geq -2\pi n_0$ ,

  2. (2) $(\mathcal \varphi _{\frac 52-k})(s)$ converges absolutely for all s with $\mathrm {Re}(s)>0$ ,

  3. (3) for each $1\leq j\leq m$ , the series

    $$ \begin{align*} &\sum_{n\gg-\infty\atop n+j^2\equiv 0\pmod{4m}}\left|c^+_{F}\left(\frac{n+j^2}{4m}, j\right)\right| (\mathcal{L} |\varphi|)(\pi n/(2m))\\ &\quad +\sum_{n<0\atop n+j^2\equiv 0\pmod{4m}}\left|c^-_{F}\left(\frac{n+j^2}{4m}, j\right)\right| (\pi |n+\kappa_j|/m)^{\frac32-k} \\ &\quad \times\int_0^\infty\frac{(\mathcal{L}|\varphi_{\frac52-k}|)(-\pi n(2t+1)/(2m))}{(1+t)^{k-\frac12}} dt \end{align*} $$
    converges.

For $\varphi \in \mathcal {F}_F$ , we define the L-series of F by

$$ \begin{align*} L_F(\varphi) &:=\sum_{j=1}^{2m}\sum_{n\gg-\infty\atop n+j^2\equiv 0\pmod{4m}} c^+_{F}\left(\frac{n+j^2}{4m}, j\right) (\mathcal{L}\varphi) (\pi (n+\kappa_j)/(2m))\quad \mathbf{e}_j\\ &\quad +\sum_{j=1}^{2m}\sum_{n<0\atop n+j^2\equiv 0\pmod{4m}} c^-_{F}\left(\frac{n+j^2}{4m}, j\right) (-\pi (n+\kappa_j)/m)^{\frac32-k}\\ &\quad\times\int_0^\infty\frac{(\mathcal{L}\varphi_{\frac52-k})(-\pi n(2t+1)/(2m))}{(1+t)^{k-\frac12}} dt \quad \mathbf{e}_j. \end{align*} $$

Let $L_m$ be the heat operator defined by

$$\begin{align*}L_{m}:=\frac{2m}{\pi i}\frac{\partial}{\partial\tau}-\frac{1}{(2\pi i)^2}\frac{\partial^2}{\partial z^2}. \end{align*}$$

We define a differential operator $\alpha _k$ by

$$\begin{align*}(\alpha_k F)(\tau,z) L=\tau\left(\frac{\partial F}{\partial\bar{\tau}} +\frac{\pi i}{2m}L_m(F)\right)(\tau,z) +\frac{2k-1}{4}F(\tau,z). \end{align*}$$

Then, we prove that the corresponding vector-valued function for $\alpha _k F$ is the image of the corresponding vector-valued harmonic weak Maass form for F under the operator $\delta _{k-\frac 12}$ .

Lemma 4.3 If $F\in \hat {J}_{k,m}$ , then we have

$$\begin{align*}\phi_{k,m}\left(\alpha_k F\right) =\delta_{k-\frac12}\left(\phi_{k,m}(F)\right)\hspace{-0.7pt}. \end{align*}$$

Proof Suppose that F is in $\hat {J}_{k,m}$ . Then, it has the theta decomposition

$$\begin{align*}F(\tau,z) =\sum_{j=1}^{2m} F_j(\tau)\theta_{m,j}(\tau,z). \end{align*}$$

Moreover, $(\alpha _k F)|_{m} X =\alpha _k F$ for all $X\in \mathbb {Z}^2$ and $\alpha _k F$ is holomorphic in $z\in \mathbb {C}$ . Therefore, $\alpha _k F$ also has the theta expansion

$$\begin{align*}(\alpha_k F)(\tau,z) =\sum_{j=1}^{2m} (\alpha_k F)_j (\tau)\theta_{m,j}(\tau,z). \end{align*}$$

Note that

$$\begin{align*}L_m(\theta_{m,j}) = 0, \quad \frac{\partial}{\partial\bar{\tau}} (\theta_{m,j}) = 0 \end{align*}$$

for every $1\leq j\leq 2m$ . Therefore, we have

$$\begin{align*}(\alpha_k F)_j =\delta_{k-\frac12}(F_j) \end{align*}$$

for each $1\leq j\leq 2m$ .

Suppose that $F\in \hat {J}_{k,m}$ . Let $\mathcal {F}_{\alpha _k F}$ be the space of functions $\varphi \in C(\mathbb {R},\mathbb {C})$ such that

  1. (1) $(\mathcal {L}\varphi )(s)$ converges absolutely for all s with $\mathrm {Re}(s)\geq -2\pi n_0$ ,

  2. (2) $(\mathcal \varphi _{\frac 72-k})(s)$ converges absolutely for all s with $\mathrm {Re}(s)>0$ ,

  3. (3) for each $1\leq j\leq m$ the series

    $$ \begin{align*} &\sum_{n\gg-\infty\atop n+j^2\equiv 0\pmod{4m}}\left|c^+_{F}\left(\frac{n+j^2}{4m}, j\right)(n/(4m))\right| (\mathcal{L} |\varphi_2|)(\pi n/(2m))\\ &\quad +\sum_{n+\kappa_j<0\atop n+j^2\equiv 0\pmod{4m}}\left|c^-_{F}\left(\frac{n+j^2}{4m}, j\right)(n/(4m))\right| (\pi |n|/m)^{\frac32-k} \\ &\quad \times\int_0^\infty\frac{(\mathcal{L}|\varphi_{\frac72-k}|)(-\pi n(2t+1)/(2m))}{(1+t)^{k-\frac12}} dt \end{align*} $$
    converges.

For $\varphi \in \mathcal {F}_{\alpha _k F}$ , we define $L_{\alpha _k F}(\varphi )$ by

$$ \begin{align*} L_{\alpha_k F}(\varphi) &:=\frac{2k-1}{4}L_F(\varphi) -2\pi\sum_{j=1}^{2m}\sum_{n\gg-\infty\atop n+j^2\equiv 0\pmod{4m}} c^+_{f,j}(n) (n/2m) (\mathcal{L}\varphi_2) (\pi n/(2m))\quad \mathbf{e}_j\\ &\quad -2\pi\sum_{j=1}^{2m}\sum_{n<0\atop n+j^2\equiv 0\pmod{4m}} c^-_{F}\left(\frac{n+j^2}{4m}, j\right)(n/(4m))(-\pi n/m)^{\frac32-k}\\ &\quad\times\int_0^\infty\frac{(\mathcal{L}\varphi_{\frac72-k})(-\pi n(2t+1)/(2m))}{(1+t)^{k-\frac12}} dt\quad \mathbf{e}_j. \end{align*} $$

We prove the converse theorem in the case of harmonic Maass Jacobi forms using a similar argument as in the proof of Theorem 3.5.

Theorem 4.4 Let $(c^+_{F}(l,r))_{4ml-r^2\geq -D_0}$ and $(c^-_{F}(l,r))_{4ml-r^2<0}$ be sequences of complex numbers such that $c^+_F(l,r), c^-_{F}(l,r) = O(e^{C\sqrt {|4ml-r^2|}})$ as $|4ml-r^2|\to \infty $ , for some $C>0$ . For each $\tau \in \mathbb {H}$ and $z\in \mathbb {C}$ , set

$$\begin{align*}F(\tau,z) &:=\sum_{l,r\in\mathbb{Z}\atop 4ml-r^2\gg -\infty} c^+_{F}(l,r)e^{2\pi il\tau} e^{2\pi irz} \\ &\quad +\sum_{l,r\in\mathbb{Z}\atop 4ml-r^2>0} c^-_{F}(l,r)\Gamma\left(1-k,\frac{(4ml-r^2)\pi v}{m}\right)e^{2\pi il\tau} e^{2\pi irz}. \end{align*}$$

Suppose that for each $\varphi \in S_c(\mathbb {R}_+)$ , the functions $L_F(\varphi )$ and $L_{\alpha _k F}(\varphi )$ satisfy

$$\begin{align*}L_F(\varphi) = i^{k-\frac12}\overline{\rho_m}(S) L_f(\varphi|_{2-k+\frac12,\chi_\eta} S) \end{align*}$$

and

$$\begin{align*}L_{\alpha_k F}(\varphi) = -i^{k-\frac12}\overline{\rho_m}(S) L_{\alpha_k f}(\varphi|_{2-k+\frac12,\chi_\eta}S). \end{align*}$$

Then, F is a harmonic Maass Jacobi form in $\hat {J}_{k, m}$ .

5 L-series of harmonic weak Maass forms in the Kohnen plus space

In this section, we consider the case of half-integral weight modular forms in the Kohnen plus space and prove a converse theorem for this case. Let k be a positive even integer. By [Reference Eichler and Zagier11, Theorem 5.4], there is an isomorphism $\psi _k$ between $S_{k,1}$ and $S^+_{k-\frac 12}$ , where $S^+_{k-\frac 12}$ denotes the space of cusp forms in the plus space of weight $k-\frac 12$ on $\Gamma _0(4)$ .

Let f be a cusp form in $S^+_{k-\frac 12}$ with Fourier expansion

$$\begin{align*}f(\tau) =\sum_{\substack{n>0\\ n\equiv 0,3\pmod{4}}} a_f(n)e^{2\pi in\tau}. \end{align*}$$

Then, the L-function of f is defined by

$$\begin{align*}L(f,s) :=\sum_{\substack{n>0\\ n\equiv 0,3\pmod{4}}}\frac{a_f(n)}{n^s}. \end{align*}$$

For $1\leq j\leq 2$ , let $c_j$ be defined by

(5.1) $$ \begin{align} a_{f,j}(n) := \begin{cases} a_f(n) &\text{if } n\equiv -j^2\pmod{4},\\ 0 &\text{otherwise}. \end{cases} \end{align} $$

Then, $a_f(n) = a_{f,1}(n) + a_{f,2}(n)$ for all n. With this, we consider partial sums of $L(f,s)$ by

$$\begin{align*}L(f,j,s) :=\sum_{\substack{n>0\\ n\equiv 0,3\pmod{4}}}\frac{c_j(n)}{n^s} \end{align*}$$

for $1\leq j\leq 2$ . Suppose that F is a Jacobi cusp form in $S_{k,1}$ . By the theta decomposition, we have a corresponding vector-valued modular form $(F_1(\tau ), F_2(\tau ))$ . Then, the isomorphism $\psi _k$ from $S_{k,1}$ to $S^+_{k-\frac 12}$ is given by

$$\begin{align*}\psi_k(F)(\tau) =\sum_{j=1}^2 F_j(4\tau). \end{align*}$$

From this, we see that

$$\begin{align*}L(\psi_k(F),j,s) =\frac{1}{4^s} L(F,j,s). \end{align*}$$

Let $H^+_{k-\frac 12}$ denote the space of harmonic weak Maass forms in the plus space of weight $k-\frac 12$ on $\Gamma _0(4)$ . Then, by [Reference Cho and Choie6], we see that $\psi _k$ can be extended to an isomorphism between $\hat {J}_{k,1}$ and $H^+_{k-\frac 12}$ as follows. Suppose that $F\in \hat {J}_{k,1}$ . Then, F has the theta decomposition

$$\begin{align*}F(\tau,z) =\sum_{j=1}^2 F_j(\tau)\theta_{m,j}(\tau,z). \end{align*}$$

Then, $\psi _k(F)(\tau ) =\sum _{j=1}^2 F_j(4\tau )$ .

Suppose that $f\in H^+_{k-\frac 12}$ with its Fourier expansion

$$ \begin{align*} f(\tau) &=\sum_{n\gg -\infty}c^+_{f}(n) e^{2\pi i n\tau} +\sum_{n< 0}c^-_{f}(n)\Gamma\left(\frac32-k,-4\pi nv\right) e^{2\pi i n\tau}. \end{align*} $$

For $1\leq j\leq 2$ , we define $c^{\pm }_{f,j}(n)$ as in (5.1), and

$$\begin{align*}f_j(\tau) =\sum_{n\gg -\infty}c^+_{f,j}(n) e^{2\pi i n\tau} +\sum_{n< 0}c^-_{f,j}(n)\Gamma\left(\frac32-k,-4\pi nv\right) e^{2\pi i n\tau}. \end{align*}$$

For a vector-valued function $F(\tau ) :=\sum _{j=1}^{2} f_j(\tau /4)\mathbf {e}_j$ , we define the L-series $L_F(\varphi )$ and $L_{\delta _{k-\frac 12} F}(\varphi )$ as in (3.3) and (3.5), respectively.

We now have the following converse theorem for half-integral weight harmonic weak Maass forms in the Kohnen plus space.

Theorem 5.1 Let $(c^+_{f}(n))_{n\geq -n_0}$ and $(c^-_{f}(n))_{n<0}$ be sequences of complex numbers such that

$$\begin{align*}c^+_f(n), c^-_{f}(n) = O\left(e^{C\sqrt{|n|}}\right) \end{align*}$$

as $|n|\to \infty $ , for some $C>0$ . For each $\tau \in \mathbb {H}$ , set

$$\begin{align*}f(\tau) :=\sum_{n\gg -n_0}c^+_{f}(n) e^{2\pi i n\tau} +\sum_{n< 0}c^-_{f}(n)\Gamma\left(\frac32-k,-4\pi nv\right) e^{2\pi i n\tau}. \end{align*}$$

Suppose that for each $\varphi \in S_c(\mathbb {R}_+)$ , the functions $L_F(\varphi )$ and $L_{\alpha _k F}(\varphi )$ satisfy

$$\begin{align*}L_F(\varphi) = i^{k-\frac12}\overline{\rho_2}(S) L_f(\varphi|_{2-k+\frac12,\chi_\eta} S) \end{align*}$$

and

$$\begin{align*}L_{\alpha_k F}(\varphi) = -i^{k-\frac12}\overline{\rho_2}(S) L_{\alpha_k f}(\varphi|_{2-k+\frac12,\chi_\eta}S). \end{align*}$$

Then, f is a harmonic weak Maass form in $H^+_{k-\frac 12}$ .

Acknowledgements

The second-named author thanks the FAS Dean’s Office at the American University of Beirut for the support of his summer research leave. We also extend our gratitude to the referee for the insightful comments, which improved our paper.

Footnotes

The first-named author was supported by the National Research Foundation of Korea (NRF) grant, which was funded by the Korea government(MSIT) (Grant No. RS-2024-00346031).

References

Berndt, R., $L$ -functions for Jacobi formsá la Hecke . Manuscripta Math. 84(1994), no. 1, 101112.Google Scholar
Bantay, P. and Gannon, T., Vector-valued modular functions for the modular group and the hypergeometric equation . Commun Number Theory Phys. 1(2007), no. 4, 651680.Google Scholar
Bringmann, K., Raum, M., and Richter, O., Harmonic Maass-Jacobi forms with singularities and a theta-like decomposition . Trans. Amer. Math. Soc. 367(2015), no. 9, 66476670.Google Scholar
Bringmann, K. and Richter, O., Zagier-type dualities and lifting maps for harmonic Maass–Jacobi forms . Adv. Math. 225(2010), no. 4, 22982315.Google Scholar
Bruinier, J. H. and Funke, J., On two geometric theta lifts . Duke Math. J. 125(2004), no. 1, 4590.Google Scholar
Cho, B. and Choie, Y., On harmonic weak Maass forms of half-integral weight . Proc. Amer. Math. Soc. 141(2013), no. 8, 26412652.Google Scholar
Choi, D. and Lim, S., The Eichler-Shimura cohomology theorem for Jacobi forms . Monatsh. Math. 182(2017), no. 2, 271288.Google Scholar
Liu, X., Ding, G., Modular flavor symmetry and vector-valued modular forms . J. High Energ. Phys. 2022(2022). no. 123. https://doi.org/10.1007/JHEP03(2022)123Google Scholar
Diamantis, N., Lee, M., Raji, W., and Rolen, L., $L$ -series of harmonic Maass forms and a summation formula for harmonic lifts . Int. Math. Res. Not. (2023), no. 18, 1572915765.Google Scholar
Hecke, E., Uber die Bistimmung Dirichletscher Reihendurch ihre Funktionalgleichung . Math. Ann. 112(1936), 664699.Google Scholar
Eichler, M. and Zagier, D., The theory of Jacobi forms, Birkhäuser, Basel, 1985.Google Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Tables of integral transforms . Vol. 1, McGraw-Hill Book Company, Inc., New York, 1954. Based, in part, on notes left by Harry Bateman.Google Scholar
Jin, S. and Lim, S., On sign changes of Jacobi forms . J. Number Theory 203(2019), 334349.Google Scholar
Jin, S. and Lim, S., Differential operators on Jacobi forms of half-integral weight . J. Math. Anal. Appl. 536(2024), no. 1, Paper No. 128176, 20 pp.Google Scholar
Kim, H. and Shahidi, F., Functorial products for $G{L}_2\times G{L}_3$ and the symmetric cube for $G{L}_2$ . Ann. Math. 155(2002), 837893.Google Scholar
Knopp, M. and Mason, G., On vector-valued modular forms and their Fourier coefficients . Acta Arith. 110(2023), no. 2, 117124.Google Scholar
Lim, S. and Raji, W., Non-vanishing of $L$ -functions of vector-valued modular forms . Taiwanese J. Math. 28(2024), no. 3, 475491.Google Scholar
Lim, S. and Raji, W., Results on the non-vanishing of derivatives of $L$ -functions of vector-valued modular forms . accepted in Proc. Edinburgh Math Soc. Published online 2024:117.Google Scholar
Borcherds, R., Automorphic forms with singularities on Grassmannians . Inv. Math. 132(1998), 491562.Google Scholar
Borcherds, R., Reflection groups of Lorentian lattices . Duke Math. J. 104(2000), 319366.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W., NIST handbook of mathematical functions, Cambridge University Press, Washington, DC, 2010. Cambridge: U. S. Department of Commerce, National Institute of Standards and Technology. With 1 CD-ROM (Windows, Macintosh and UNIX).Google Scholar
Selberg, A., On the estimation of Fourier coefficients of modular forms, Proceedings of Symposia in Pure Mathematics, 8, American Mathematical Society, Providence, RI, 1965, pp. 115.Google Scholar