Hostname: page-component-6dbcb7884d-64ff6 Total loading time: 0 Render date: 2025-02-14T08:10:24.989Z Has data issue: false hasContentIssue false

Growth of Homology of Centre-by-metabelian Pro-$p$ Groups

Published online by Cambridge University Press:  09 January 2019

Dessislava H. Kochloukova
Affiliation:
Department of Mathematics, State University of Campinas (UNICAMP), 13083-859 Campinas-SP, Brazil Email: desi@ime.unicamp.br
Aline G. S. Pinto
Affiliation:
Department of Mathematics, University of Brasília, 70297-400 Brasília, Brazil Email: pinto.aline@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a centre-by-metabelian pro-$p$ group $G$ of type $\text{FP}_{2m}$, for some $m\geqslant 1$, we show that $\sup _{M\in {\mathcal{A}}}$ rk $H_{i}(M,\mathbb{Z}_{p})<\infty$, for all $0\leqslant i\leqslant m$, where ${\mathcal{A}}$ is the set of all subgroups of $p$-power index in $G$ and, for a finitely generated abelian pro-$p$ group $V$, rk $V=\dim V\otimes _{\mathbb{Z}_{p}}\mathbb{Q}_{p}$.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Footnotes

Author D. H. K. was partially supported by “bolsa de produtividade em pesquisa” 303350/2013-0 CNPq, Brazil and “projeto de pesquisa regular” FAPESP 2016/05678-3; author A. G. S. P. was partially supported by “Projeto Universal 482658/2013-4” from CNPq, Brazil.

References

Baumslag, G., Subgroups of finitely presented metabelian groups . J. Austral. Math. Soc. 16(1973), 98110. https://doi.org/10.1017/S1446788700013987.Google Scholar
Bieri, R., Homological dimension of discrete groups . Queen Mary College Mathematical Notes, London, 1981.Google Scholar
Bieri, R. and Strebel, R., Valuations and finitely presented metabelian groups . Proc. London Math. Soc. (3) 41(1980), no. 3, 439464. https://doi.org/10.1112/plms/s3-41.3.439.Google Scholar
Bridson, M. R. and Kochloukova, D. H., The torsion-free rank of homology in towers of soluble pro-p groups . Israel J. Maths. 219(2017), no. 2, 817834. https://doi.org/10.1007/s11856-017-1499-6.Google Scholar
Bryant, R. M. and Groves, J. R. J., Finitely presented centre-by-metabelian Lie algebras . Bull. Austral. Math. Soc. 60(1999), no. 2, 221226. https://doi.org/10.1017/S0004972700036352.Google Scholar
Corob Cook, G., Bieri-Eckmann criteria for profinite groups . Israel J. Math. 212(2016), no. 2, 857893. https://doi.org/10.1007/s11856-016-1311-z.Google Scholar
Corob Cook, G., On profinite groups of type FP . Adv. Math. 294(2016), 216255. https://doi.org/10.1016/j.aim.2016.02.020.Google Scholar
Dixon, J. D., du Sautoy, M. P. F., Mann, A., and Segal, D., Analytic pro-p groups . Second edition. Cambridge Studies in Advanced Mathematics, 61. Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9780511470882.Google Scholar
Groves, J. R. J., Finitely presented centre-by-metabelian groups . J. London Math. Soc. (2) 18(1978), no. 1, 6569. https://doi.org/10.1112/jlms/s2-18.1.65.Google Scholar
Groves, J. R. J. and Kochloukova, D. H., Embedding properties of metabelian Lie algebras and metabelian discrete groups . J. London Math. Soc. (2) 73(2006), no. 2, 475492. https://doi.org/10.1112/S0024610705022581.Google Scholar
King, J., Embedding theorems for pro-p groups . Math. Proc. Cambridge Philos. Soc. 123(1998), no. 2, 217226. https://doi.org/10.1017/S0305004197002181.Google Scholar
King, J., Homological finiteness conditions for pro-p groups . Comm. Algebra 27(1999), no. 10, 49694991. https://doi.org/10.1080/00927879908826743.Google Scholar
King, J., A geometric invariant for metabelian pro-p groups . J. London Math. Soc. (2) 60(1999), no. 1, 8394. https://doi.org/10.1112/S0024610799007693.Google Scholar
Kochloukova, D. H., Metabelian pro-p groups of type FPm . J. Group Theory 3(2000), no. 4, 419431. https://doi.org/10.1515/jgth.2000.033.Google Scholar
Kochloukova, D. H. and Mokari, F. Y., Virtual rational Betti numbers of abelian-by-polycyclic groups . J. Algebra 443(2015), 7598. https://doi.org/10.1016/j.jalgebra.2015.07.005.Google Scholar
Kochloukova, D. H. and Pinto, A. G. S., Embedding properties of metabelian pro-p groups . J. Group Theory. 9(2006), no. 4, 455465. https://doi.org/10.1515/JGT.2006.029.Google Scholar
Kochloukova, D. H. and Pinto, A. G. S., Centre-by-metabelian pro-p groups of type FPm . Math. Proc. Cambridge Philos. Soc. 145(2008), no. 2, 305309. https://doi.org/10.1017/S0305004108001163.Google Scholar
Kochloukova, D. H. and da Silva, F. S., Embedding homological properties of metabelian discrete groups: the general case . J. Group Theory 10(2007), no. 4, 505529. https://doi.org/10.1515/JGT.2007.041.Google Scholar
Kochloukova, D. H. and Zalesskii, P., Homological invariants for pro-p groups and some finitely presented pro-C groups . Monatsh. Math. 144(2005), no. 4, 285296. https://doi.org/10.1007/s00605-004-0269-9.Google Scholar
Pletch, A., Profinite duality groups II . J. Pure Appl. Algebra 16(1980), no. 1, 285297. https://doi.org/10.1016/0022-4049(80)90034-1.Google Scholar
Remeslennikov, V. N., Imbedding theorems for profinite groups . Izv. Akad. Nauk SSSR Ser. Mat. 43(1979), no. 2, 399417, 480.Google Scholar
Ribes, L. and Zalesskii, P., Profinite groups . Ergebnisse der Mathematik und ihrer Grenzgebiete, 40. Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/978-3-662-04097-3.Google Scholar
Weibel, C. A., An introduction to homological algebra . Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994. https://doi.org/10.1017/CBO9781139644136.Google Scholar
Wilson, J. S., Finite presentation of pro-p groups and discrete groups . Invent. Math. 105(1991), no. 1, 177183. https://doi.org/10.1007/BF01232262.Google Scholar
Wilson, J. S., Profinite groups . London Mathematical Society Monographs. New Series, 19. The Clarendon Press, Oxford University Press, New York, 1998.Google Scholar