Published online by Cambridge University Press: 08 January 2020
Let $\mathbb{Z}$ and
$\mathbb{Z}^{+}$ be the set of integers and the set of positive integers, respectively. For
$a,b,c,d,n\in \mathbb{Z}^{+}$, let
$t(a,b,c,d;n)$ be the number of representations of
$n$ by
$\frac{1}{2}ax(x+1)+\frac{1}{2}by(y+1)+\frac{1}{2}cz(z+1)+\frac{1}{2}dw(w+1)$ with
$x,y,z,w\in \mathbb{Z}$. Using theta function identities we prove 13 transformation formulas for
$t(a,b,c,d;n)$ and evaluate
$t(2,3,3,8;n)$,
$t(1,1,6,24;n)$ and
$t(1,1,6,8;n)$.
The author is supported by the National Natural Science Foundation of China (Grant No. 11771173).