1 Introduction
1.1 The cylindrical model problem
Let
$\Omega =\{x\geq 0,(y,z)\in \mathbb {R}^2\}\subset \mathbb {R}^3$
with smooth boundary
$\partial \Omega =\{x=0\}$
and let
$\Delta =\partial _x^2+(1+x)\partial _y^2+\partial _z^2$
. We consider solutions of the linear Dirichlet wave equation inside
$\Omega $
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn1.png?pub-status=live)
The Riemannian manifold
$(\Omega ,\Delta )$
with
$\Delta =\partial _x^2+(1+x)\partial _y^2+\partial _z^2$
can be locally seen as a cylindrical domain in
$\mathbb {R}^3$
by taking cylindrical coordinates
$(r,\theta ,z)$
, where we set
$r=1-x/2,\theta =y$
and
$z=z$
. The main goal of this work is to prove the Strichartz estimates inside cylindrical convex domains for the solution u to (1.1).
1.2 Some known results
Let us recall a few results about Strichartz estimates (see [Reference Ivanovici, Lebeau and Planchon10, Section 1]). Let
$(\Omega ,g)$
be a Riemannian manifold without boundary of dimension
$d\geq 2$
. Local-in-time Strichartz estimates state that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn2.png?pub-status=live)
where
$\dot {H}^\beta $
denotes the homogeneous Sobolev space over
$\Omega $
of order
$\beta $
,
$2\leq q,r\leq \infty $
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu1.png?pub-status=live)
Here
$u=u(t,x)$
is a solution to the wave equation
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu2.png?pub-status=live)
where
$\Delta _g$
denotes the Laplace–Beltrami operator on
$(\Omega ,g)$
. The estimates (1.2) hold on
$\Omega =\mathbb {R}^d$
and
$g_{ij}=\delta _{ij}.$
Blair et al. [Reference Blair, Smith and Sogge4] proved the Strichartz estimates for the wave equation on a (compact or noncompact) Riemannian manifold with boundary. They proved that the Strichartz estimates (1.2) hold if
$\Omega $
is a compact manifold with boundary and
$ (q,r,\beta )$
is a triple satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu3.png?pub-status=live)
Recently in [Reference Ivanovici, Lebeau and Planchon10], Ivanovici et al. deduced local-in-time Strichartz estimates (1.2) from the optimal dispersive estimates inside strictly convex domains of dimension
$d\geq 2$
for a triple
$(d,q,\beta )$
satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu4.png?pub-status=live)
For
$d\geq 3$
, this improves the range of indices for which sharp Strichartz estimates hold compared to the result by Blair et al. [Reference Blair, Smith and Sogge4]. However, the results in [Reference Blair, Smith and Sogge4] apply to any domains or manifolds with boundary. The latest results in [Reference Ivanovici, Lebeau and Planchon11] on Strichartz estimates inside the Friedlander model domain have been obtained for pairs
$(q, r)$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu5.png?pub-status=live)
This result improves on the known results for strictly convex domains for
$d=2$
, while [Reference Ivanovici, Lebeau and Planchon10] only gives a loss of
$\tfrac 14$
.
Let us also recall that dispersive estimates for the wave equation in
$\mathbb {R}^ d$
follow from the representation of the solution as a sum of Fourier integral operators (see [Reference Bahouri, Chemin and Danchin1, Reference Brener5, Reference Ginibre and Velo8]). They read as follows:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn3.png?pub-status=live)
where
$\Delta _{\mathbb {R}^d}$
is the Laplace operator in
$\mathbb {R}^d$
. Here and in the following, the function
$\chi $
belongs to
$C_0^\infty (]0,\infty [)$
and is equal to
$1$
on
$[1,2]$
and
$D_t={(1}/{i})\partial _t$
. Inside strictly convex domains
$\Omega _D$
of dimensions
$d\geq 2$
, the optimal (local-in-time) dispersive estimates for the wave equation have been established by Ivanovici et al. [Reference Ivanovici, Lebeau and Planchon10]. More precisely, they have proved that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn4.png?pub-status=live)
where
$\Delta _D$
is the Laplace operator on
$\Omega _D$
. Due to the formation of caustics in arbitrarily small times, (1.4) induces a loss of
$\tfrac 14$
powers of the
$(h/|t|)$
factor compared to (1.3). The local-in-time dispersive estimates for the wave equation inside cylindrical convex domains in dimension
$3$
have been derived in [Reference Meas13, Reference Meas14] as follows:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu6.png?pub-status=live)
where
$\mathcal {G}_a$
is the Green function for (1.1).
2 Main result
We now state our main result concerning the Strichartz estimates inside cylindrical convex domains in dimension
$3$
.
Theorem 2.1. Let
$(\Omega ,\Delta )$
be defined as before. Let u be a solution of the wave equation on
$\Omega $
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu7.png?pub-status=live)
Then for all T, there exists
$C_T$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu8.png?pub-status=live)
with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu9.png?pub-status=live)
To prove Theorem 2.1, we first prove the frequency-localised Strichartz estimates by utilising the frequency-localised dispersive estimates, interpolation and
$TT^\ast $
arguments. We then apply the Littlewood–Paley square function estimates (see [Reference Blair, Ford, Herr and Marzuola2, Reference Blair, Ford and Marzuola3, Reference Ivanovici and Planchon12]) to get the Strichartz estimates (Theorem 2.1) in the context of cylindrical domains. For
$d=3$
, Theorem 2.1 improves the range of indices for which the sharp Strichartz estimates hold. However, our result is restricted to cylindrical domains, while [Reference Blair, Smith and Sogge4] applies to any domain.
3 Strichartz estimates for the model problem
Let us recall some notation. For any
$I\subset \mathbb {R},\Omega \subset \mathbb {R}^d$
, we define the mixed space-time norms
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu10.png?pub-status=live)
3.1 Frequency-localised Strichartz estimates
In this section, we prove Theorem 3.1. The classical strategy is as follows. We begin by interpolating between the energy estimates and dispersive estimates. This yields a new estimate, which we further manipulate via a classical
$L^p$
inequality to establish (3.8). This last step imposes conditions on the space-time exponent pair
$(q,r)$
; these are precisely the wave admissibility criteria. The classical inequalities used are the Young, Hölder and Hardy–Littlewood–Sobolev inequalities.
We first recall the Littlewood–Paley decomposition and some links with Sobolev spaces [Reference Bahouri, Chemin and Danchin1]. Let
$\chi \in C_0^\infty (\mathbb {R}^*)$
and equal to
$1$
on
$[\tfrac 12,2]$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu11.png?pub-status=live)
We define the associated Littlewood–Paley frequency cutoffs
$\chi (2^{-j}\sqrt {-\Delta })$
using the spectral theorem for
$\Delta $
and we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu12.png?pub-status=live)
This decomposition takes a single function and writes it as a superposition of a countably infinite family of functions
$\chi $
each one having a frequency of magnitude
$\sim 2^{j}$
for
$j\geq 1$
. A norm of the homogeneous Sobolev space
$\dot {H}^{\beta }$
is defined as follows: for all
$\beta \geq 0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu13.png?pub-status=live)
With this decomposition, the Littlewood–Paley square function estimate (see [Reference Blair, Ford, Herr and Marzuola2, Reference Blair, Ford and Marzuola3, Reference Ivanovici and Planchon12]) reads as follows: for
$f\in L^r(\Omega )$
and for all
$r\in [2,\infty [$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn5.png?pub-status=live)
The proof follows from the classical Stein argument involving Rademacher functions and an appropriate Mikhlin–Hörmander multiplier theorem.
We define the frequency localisation
$v_j$
of u by
$v_j=\chi (2^{-j}\sqrt {-\Delta })u$
. Hence,
$u=\sum _{j\geq 0}v_j$
. Let
$h=2^{-j}$
. We deduce from the dispersive estimates inside cylindrical convex domains established in [Reference Meas13, Reference Meas14] the frequency-localised dispersive estimates for the solution
$v_j=\chi (hD_t)u$
of the (frequency-localised) wave equation
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn6.png?pub-status=live)
which read as follows:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn7.png?pub-status=live)
where we use the notation
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu14.png?pub-status=live)
These estimates yield the following Strichartz estimates.
Theorem 3.1 (Frequency-localised Strichartz estimates).
Let
$(\Omega ,\Delta )$
be defined as before. Let
$v_j$
be a solution of the (frequency-localised) wave equation (3.2). Then for all T, there exists
$C_T$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn8.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn9.png?pub-status=live)
with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu15.png?pub-status=live)
Remark 3.2. If
${1}/{q}=\alpha _3({1}/{2}-{1}/{r})$
, then
$\beta =(3-\alpha _3)({1}/{2}-{1}/{r})$
.
Proof of Theorem 3.1.
We prove only (3.4) since (3.5) follows analogously. We have the frequency-localised dispersive estimates in
$\Omega $
in (3.3) for
$|t|\geq h$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn10.png?pub-status=live)
and the energy estimates,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn11.png?pub-status=live)
We apply the Riesz–Thorin interpolation theorem [Reference Hörmander9] to the operator
$\dot {\mathcal {U}}(t)\chi (hD_t)$
for fixed time
$t\in \mathbb {R}$
. Interpolating between (3.6) and (3.7) with
$\theta =1-{2}/{r}$
yields
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn12.png?pub-status=live)
for
$2\leq r\leq \infty $
, where
$r'$
denotes the exponent conjugate to r (that is,
${1}/{r}+{1}/{r'}=1$
). Let T be the operator solution defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu16.png?pub-status=live)
Its adjoint is given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu17.png?pub-status=live)
Moreover,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu18.png?pub-status=live)
By the
$TT^*$
argument in [Reference Ginibre and Velo7], it is sufficient to prove
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu19.png?pub-status=live)
We have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn13.png?pub-status=live)
When
${1}/{q}< \alpha _3({1}/{2}-{1}/{r})$
, we use Young’s inequality which states that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn14.png?pub-status=live)
where
$1+{1}/{q}={1}/{\tilde r}+{1}/{p}$
. We apply (3.10) with
$\tilde r=q/2, p=q'$
and
${1}/{q}+{1}/{q'}=1$
to get the estimate
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu20.png?pub-status=live)
Since
${1}{/q}< \alpha _3({1}/{2}-{1}/{r})$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu21.png?pub-status=live)
Then (3.9) becomes
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu22.png?pub-status=live)
When
${1}/{q}= \alpha _3({1}/{2}-{1}/{r})$
, we instead use the Hardy–Littlewood–Sobolev inequality (see [Reference Hörmander9, Theorem 4.5.3]) which says that for
$K(t)=|t|^{-1/\gamma }$
and
$1<\gamma <\infty $
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn15.png?pub-status=live)
We apply (3.11) with
$\tilde r=q, p=q$
and
${1}/{\gamma }={2}/{q}=2\alpha _3({1}/{2}-{1}/{r})$
to show that
$t^{-2/q} *: L^{q'}\rightarrow L^{q}$
is bounded for
$q>2$
. Hence, from (3.9),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu23.png?pub-status=live)
3.2 Homogeneous Strichartz estimates
We can restate Theorem 2.1 as follows.
Theorem 3.3 (Theorem 2.1).
Let
$(\Omega ,\Delta )$
be defined as before. Let u be a solution of the wave equation on
$\Omega $
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn16.png?pub-status=live)
Then for all T, there exists
$C_T$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu24.png?pub-status=live)
with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu25.png?pub-status=live)
Proof. Using the square function estimates (3.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu26.png?pub-status=live)
Indeed,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu27.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu28.png?pub-status=live)
The solution u to the wave equation (3.12) with localised initial data in frequency
$1/h=2^j$
is given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu29.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu30.png?pub-status=live)
where we used Minkowski’s inequality in the third line.
4 Application
We can use the Strichartz estimates (Theorem 2.1) to obtain the well posedness of the following energy critical nonlinear wave equation in
$(\Omega , \Delta )$
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqn17.png?pub-status=live)
The solutions to (4.1) satisfy an energy conservation law:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu31.png?pub-status=live)
For initial data
$(u_0, u_1)\in H_0^1(\Omega )\times L^2(\Omega )$
, Theorem 2.1 allows the Strichartz triplet
$q=5, r=10,\,\beta =1$
and we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu32.png?pub-status=live)
As a consequence, the critical nonlinear wave equation (4.1) is locally well posed in
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230305132902986-0639:S0004972722000727:S0004972722000727_eqnu33.png?pub-status=live)
Moreover, with the arguments in [Reference Burq, Lebeau and Planchon6], we can extend local to global existence for arbitrary (finite energy) data.