Published online by Cambridge University Press: 03 July 2017
Let $G$ be a locally compact amenable group and
$A(G)$ and
$B(G)$ be the Fourier and the Fourier–Stieltjes algebras of
$G,$ respectively. For a power bounded element
$u$ of
$B(G)$, let
${\mathcal{E}}_{u}:=\{g\in G:|u(g)|=1\}$. We prove some convergence theorems for iterates of multipliers in Fourier algebras.
(a) If $\Vert u\Vert _{B(G)}\leq 1$, then
$\lim _{n\rightarrow \infty }\Vert u^{n}v\Vert _{A(G)}=\text{dist}(v,I_{{\mathcal{E}}_{u}})\text{ for }v\in A(G)$, where
$I_{{\mathcal{E}}_{u}}=\{v\in A(G):v({\mathcal{E}}_{u})=\{0\}\}$.
(b) The sequence $\{u^{n}v\}_{n\in \mathbb{N}}$ converges for every
$v\in A(G)$ if and only if
${\mathcal{E}}_{u}$ is clopen and
$u({\mathcal{E}}_{u})=\{1\}.$
(c) If the sequence $\{u^{n}v\}_{n\in \mathbb{N}}$ converges weakly in
$A(G)$ for some
$v\in A(G)$, then it converges strongly.