1 Introduction
Let
$a_i, b_i \geq 0$
(
$i=1,2,\ldots $
). The Hardy–Littlewood–Pólya inequality [Reference Hardy, Littlewood and Pólya3, Theorem 381, page 288] states that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn1.png?pub-status=live)
where
$p,q>1$
,
$1/p+1/q>1$
,
$\lambda =2-(1/p+1/q)$
. In 2015, Huang, Li and Yin used the Hardy–Littlewood–Sobolev inequality [Reference Lieb7] to generalise (1.1) to the case of higher dimensions. In addition, they also proved that the best constant can be approximated by the corresponding functional with finite terms [Reference Huang, Li and Yin4].
In 2015, Dou and Zhu in [Reference Dou and Zhu2] established a reversed Hardy–Littlewood–Sobolev inequality:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu1.png?pub-status=live)
where
$n \geq 1$
and
$p,q \in (n/(n-\lambda ),1)$
satisfy
$1/p+1/q+\lambda /n=2$
. In addition, they proved the best constant is attained. From this inequality, a reversed discrete inequality in higher dimensions was also deduced in [Reference Lei, Li and Tang5]:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu2.png?pub-status=live)
where
$f=(f_i)_{i \in \mathbb {Z}^n}$
,
$g=(g_j)_{j \in \mathbb {Z}^n}$
,
$\lambda <0$
,
$n/(n-\lambda )<p,q<1$
and
$1/p+1/q+\lambda /n \leq 2$
. When
$n=1$
and replacing
$\mathbb {Z}^n$
by
$\mathbb {N}$
, we denote the best constant by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn2.png?pub-status=live)
In 2011, Li and Villavert [Reference Li and Villavert6] proved the Hardy–Littlewood–Pólya inequality with finite terms:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn3.png?pub-status=live)
where the constant
$K_N$
satisfies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu3.png?pub-status=live)
Comparing (1.3) with (1.1) for
$p=q=2$
shows that (1.3) is an inequality in the critical case. In contrast to the estimate of
$K_N$
above, the best constant for the upper-critical inequality is bounded with respect to N [Reference Huang, Li and Yin4, Lemma 2.2]. The bounds for the best constant are helpful in giving a better understanding of the Coulomb energy in the Thomas–Fermi model describing electron gas and N-body systems [Reference Lieb, Feng, Klauder and Strayer8]. The results in higher dimensions can be found in [Reference Cheng and Li1].
In this paper, we always assume
$a_i,b_i \geq 0$
(
$i=1,2,\ldots ,N$
). We will prove the following reversed Hardy–Littlewood–Pólya inequality with finite terms.
Theorem 1.1. Let
$\lambda <0$
and
$p,q \in (0,1)$
satisfy
$1/p+1/q \leq 2-\lambda $
. Then we can find a constant
$L>0$
which only depends on
$p,q,\lambda ,N$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn4.png?pub-status=live)
Denote the best constant in (1.4) by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn5.png?pub-status=live)
Theorem 1.2. Let
$\lambda <0$
and
$p,q \in ((1-\lambda )^{-1},1)$
satisfy
$1/p+1/q \leq 2-\lambda $
. Then
$L_{p,q,\lambda ,N} \to L_{p,q,\lambda }$
when
$N \to \infty $
.
2 Proof of Theorems 1.1 and 1.2
Proof of Theorem 1.1
Write
$a=(a_1,a_2,\ldots ,a_N)$
and
$b=(b_1,b_2,\ldots ,b_N)$
. Set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu4.png?pub-status=live)
Clearly,
$J(a,b) \geq 0$
for all
$a,b \in \mathbb {R}_+^N:= \{x=(x_1,x_2,\ldots ,x_N) : x_i \geq 0, i=1,2,\ldots ,N\}$
. However,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu5.png?pub-status=live)
is compact in
$\mathbb {R}_+^N \times \mathbb {R}_+^N$
and hence the minimisation problem (1.5) has solutions in
$\mathbb {S}(N)$
. Thus, we can find
$(a(N),b(N)) \in \mathbb {S}(N)$
such that
$J(a(N),b(N)) =0$
. We call
$(a(N),b(N))$
the minimiser of J. Therefore, both the partial derivatives of J are equal to zero at
$(a(N),b(N))$
. Namely,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu6.png?pub-status=live)
for any
$(a,b) \in \mathbb {R}_+^N \times \mathbb {R}_+^N$
. From this result, by simple calculation, we see that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn6.png?pub-status=live)
Noting
$(a(N),b(N))\neq (0,0)$
(because
$(a(N),b(N))\in \mathbb {S}(N)$
), from (2.1) we see that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu7.png?pub-status=live)
Therefore,
$L_{p,q,\lambda ,N}>0$
.
Next, we prove that
$L_{p,q,\lambda ,N}$
has a positive lower bound which is independent of N. Multiplying (2.1)
$_1$
by
$a(N)_i$
and summing from
$1$
to N gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn7.png?pub-status=live)
Write
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu8.png?pub-status=live)
Since
$(a(N),b(N)) \in \mathbb {S}(N)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu9.png?pub-status=live)
From (2.2) and (1.2), it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn8.png?pub-status=live)
Therefore,
$L_{p,q,\lambda ,N}>0$
with the lower bound (2.3). This proves (1.4).
Remark 2.1. We claim that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu10.png?pub-status=live)
Without loss of generality, we can assume
$a(N)_1=\min _{1 \leq i \leq N} \{a(N)_i,b(N)_i\}$
. From (2.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn9.png?pub-status=live)
However, since
$\mathbb {S}(N) \subset \mathbb {S}(N+1)$
, it follows that
$L_{p,q,\lambda ,N}$
is nonincreasing with respect to N. Therefore,
$L_{p,q,\lambda ,N} \leq L_{p,q,\lambda ,1}$
. Taking
$a_1=b_1=1$
, we see that
$(a_1,b_1) \in \mathbb {S}(1)$
and hence
$L_{p,q,\lambda ,1} \leq a_1b_1=1$
. This gives the upper bound
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn10.png?pub-status=live)
Combining (2.5) with (2.4) yields
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu11.png?pub-status=live)
This implies our claim.
Proof of Theorem 1.2
By (1.2), we can find a minimising sequence
$(a^{(m)},b^{(m)}) \in \mathbb {S}$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu12.png?pub-status=live)
The convergence of this series implies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn11.png?pub-status=live)
when
$N_m>m$
is sufficiently large. Here,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu13.png?pub-status=live)
and
$b_{i}^{(m),N_m}$
is defined by the same truncation. Since
$(a^{(m)},b^{(m)}) \in \mathbb {S}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqn12.png?pub-status=live)
when
$N_m>m$
is sufficiently large. Therefore, noting that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu14.png?pub-status=live)
from (1.5), (2.6) and (2.7), we deduce
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231106145747981-0309:S0004972723000059:S0004972723000059_eqnu15.png?pub-status=live)
for large
$N_m$
. Letting
$m \to \infty $
and combining with (2.3) completes the proof.
Acknowledgement
The authors thank the anonymous referee very much for the useful suggestions.