No CrossRef data available.
Published online by Cambridge University Press: 04 October 2018
Given a one-dimensional downwards transient diffusion process $X$, we consider a random time
$\unicode[STIX]{x1D70C}$, the last exit time when
$X$ exits a certain level
$\ell$, and detect the optimal stopping time for it. In particular, for this random time
$\unicode[STIX]{x1D70C}$, we solve the optimisation problem
$\inf _{\unicode[STIX]{x1D70F}}\mathbb{E}[\unicode[STIX]{x1D706}(\unicode[STIX]{x1D70F}-\unicode[STIX]{x1D70C})_{+}+(1-\unicode[STIX]{x1D706})(\unicode[STIX]{x1D70C}-\unicode[STIX]{x1D70F})_{+}]$ over all stopping times
$\unicode[STIX]{x1D70F}$. We show that the process should stop optimally when it runs below some fixed level
$\unicode[STIX]{x1D705}_{\ell }$ for the first time, where
$\unicode[STIX]{x1D705}_{\ell }$ is the unique solution in the interval
$(0,\unicode[STIX]{x1D706}\ell )$ of an explicitly defined equation.