1 Introduction
Let
$T:[0,1)\to [0,1)$
be the Gauss map defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu2.png?pub-status=live)
Every irrational number
$x\in [0,1)$
can be uniquely expanded into an infinite form
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqn1.png?pub-status=live)
where
$a_{n}(x)=\lfloor 1/T^{n-1}(x)\rfloor $
are called the partial quotients of
$x.$
(Here
$\lfloor \cdot \rfloor $
denotes the greatest integer less than or equal to a real number and
$T^0$
denotes the identity map.) For simplicity of notation, we write (1.1) as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu3.png?pub-status=live)
It is clear that the Gauss transformation T acts as the shift map on the continued fraction system. That is, for each
$x=[a_1(x),a_2(x),a_3(x),\ldots ]\in [0,1)\cap \mathbb {Q}^{c},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu4.png?pub-status=live)
Gauss observed that T is measure-preserving and ergodic with respect to the Gauss measure
$\mu $
defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu5.png?pub-status=live)
For more information on the continued fraction expansion, see [Reference Khintchine3].
The metrical theory of continued fractions, which concerns the properties of the partial quotients for almost all
$x\in [0,1),$
is one of the major themes in the study of continued fractions. Wang and Wu [Reference Wang and Wu7] considered the metrical properties of the maximal run-length function
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu6.png?pub-status=live)
which counts the longest run of the same symbol among the first n partial quotients of x. They proved that, for
$\mu $
almost all
$x\in [0,1),$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu7.png?pub-status=live)
Song and Zhou [Reference Song and Zhou6] gave a more subtle characterisation of the function
$R_{n}(x).$
In this paper, we continue the study by considering the shortest distance function
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu8.png?pub-status=live)
This is motivated by the behaviour of the shortest distance between two orbits,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu9.png?pub-status=live)
in the continued fraction system. Shi et al. [Reference Shi, Tan and Zhou5] proved that, for
$\mu ^{2}$
almost all
$(x,y)\in [0,1)\times [0,1),$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu10.png?pub-status=live)
where
$H_{2}$
is the Rényi entropy defined by (1.2). Investigating the shortest distance between two orbits amounts to estimating the longest common substrings between two sequences of partial quotients. In fact, [Reference Shi, Tan and Zhou5] focused on the asymptotics of the length of the longest common substrings in two sequences of partial quotients.
For
$n\geq 1$
and
$(a_{1},\ldots ,a_{n})\in \mathbb {N}^{n}$
, we call
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu11.png?pub-status=live)
an nth cylinder. For
$m\geq 2$
, we define the generalised Rényi entropy with respect to the Gauss measure
$\mu $
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqn2.png?pub-status=live)
The existence of the limit (1.2) for the Gauss measure
$\mu $
was established in [Reference Haydn and Vaienti2].
Theorem 1.1. For
$\mu ^{m}$
-almost all
$(x_{1},\ldots ,x_{m})\in [0,1)^{m},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu12.png?pub-status=live)
Here we use the convention that
${1}/{0}=\infty $
and
${1}/{\infty }=0.$
It is natural to study the exceptional set in this limit theorem. We define the exceptional set as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu13.png?pub-status=live)
and the level set as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu14.png?pub-status=live)
Throughout the paper,
$\dim _{H}A$
denotes the Hausdorff dimension of the set
$A.$
Theorem 1.2. For any
$\alpha $
with
$0\leq \alpha \leq \infty ,$
$\dim _{H}\widetilde {E}=\dim _{H}E(\alpha )=m.$
In fact, Theorem 1.2 follows immediately from the following more general result. For any
$0\leq \alpha \leq \beta \leq \infty ,$
set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu15.png?pub-status=live)
Theorem 1.3. For any
$\alpha ,\beta $
with
$0\leq \alpha \leq \beta \leq \infty ,$
$\dim _{H}E(\alpha ,\beta )=m.$
2 Preliminaries
In this section, we fix some notation and recall some basic properties of continued fraction expansions. A detailed account of continued fractions can be found in Khintchine’s book [Reference Khintchine3].
For any irrational number
$x\in [0,1)$
with continued fraction expansion (1.1), we denote by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu16.png?pub-status=live)
the nth convergent of
$x.$
With the conventions
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu17.png?pub-status=live)
we have, for any
$n\ge 0,$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu18.png?pub-status=live)
Obviously,
$q_{n}(x)$
is determined by the first n partial quotients
$a_{1}(x),\ldots ,a_{n}(x).$
So we also write
$q_{n}(a_{1}(x),\ldots ,a_{n}(x))$
in place of
$q_{n}(x).$
If no confusion is likely to arise, we write
$a_{n}$
and
$q_{n}$
in place of
$a_{n}(x)$
and
$q_{n}(x),$
respectively.
Proposition 2.1 [Reference Khintchine3].
For
$n\geq 1$
and
$(a_{1},\ldots ,a_{n})\in \mathbb {N}^{n}$
:
-
(1)
$ q_n\ge 2^{(n-1)/2}$ and
$$ \begin{align*} \prod^{n}_{k=1}a_{k}\leq q_n \leq \prod^{n}_{k=1}(a_{k}+1)\leq 2^{n}\prod^{n}_{k=1}a_{k};\end{align*} $$
-
(2) the length of
$I_{n}(a_{1},\ldots ,a_{n})$ satisfies
$$ \begin{align*} \frac{1}{2q_n^2} \leq |I_{n}(a_{1},\ldots,a_{n})|=\frac{1}{(q_n+q_{n-1})q_n} \leq \frac{1}{q_n^2}. \end{align*} $$
The following
$\psi $
-mixing property is essential in proving Theorem 1.1.
Lemma 2.2 [Reference Philipp4].
For any
$k\geq 1,$
let
$\mathbb {B}^{k}_{1}=\sigma (a_{1},\ldots ,a_{k})$
and let
$\mathbb {B}^{\infty }_{k}=\sigma (a_{k},a_{k+1},\ldots )$
denote the
$\sigma $
-algebras generated by the random variables
$(a_{1},\ldots ,a_{k})$
and
$(a_{k},a_{k+1},\ldots )$
respectively. Then, for any
$E\in \mathbb {B}^{k}_{1}$
and
$F\in \mathbb {B}^{\infty }_{k+n},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu21.png?pub-status=live)
where
$|\theta |\leq K, \rho <1$
and
$K, \rho $
are positive constants independent of
$E, F, n$
and
$k.$
To estimate the measure of a limsup set in a probability space, the following lemma is widely used.
Lemma 2.3 (Borel–Cantelli lemma).
Let
$(\Omega , \mathcal {B}, \nu )$
be a finite measure space and let
$\{A_n\}_{n\ge 1}$
be a sequence of measurable sets. Define
$A=\bigcap _{N=1}^{\infty }\bigcup _{n=N}^{\infty }A_n.$
Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu22.png?pub-status=live)
Let
$\mathbb {K}=\{k_{n}\}_{n\geq 1}$
be a subsequence of
$\mathbb {N}$
that is not cofinite. Define a mapping
$\phi _{\mathbb {K}}:[0,1)\cap \mathbb {Q}^{c}\rightarrow [0,1)\cap \mathbb {Q}^{c}$
as follows. For each
$x=[a_1,a_2,\ldots ]\in [0,1)\cap \mathbb {Q}^{c},$
put
$\phi _{\mathbb {K}}(x)=\overline {x}=[c_1,c_2,\ldots ],$
where
$[c_1,c_2,\ldots ]$
is obtained by eliminating all the terms
$a_{k_{n}}$
from the sequence
$a_1, a_2,\ldots .$
Let
$\{b_{n}\}_{n\geq 1}$
be a sequence with
$b_{n}\in \mathbb {N},n\geq 1.$
Write
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu23.png?pub-status=live)
Lemma 2.4 [Reference Song and Zhou6].
Assume that
$\{b_{n}\}_{n\geq 1}$
is bounded. If the sequence
$\mathbb {K}$
is of density zero in
$\mathbb {N},$
that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu24.png?pub-status=live)
where
$\sharp $
denotes the number of elements in a set, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu25.png?pub-status=live)
We close this section by citing Marstrand’s product theorem.
Lemma 2.5 [Reference Falconer1].
If
$E,F\subset \mathbb {R}^{d}$
for some
$d,$
then
$\dim _{H}(E\times F)\geq \dim _{H}E+\dim _{H}F.$
3 Proof of Theorem 1.1
Theorem 1.1 can be proved from the following two propositions.
Proposition 3.1. For
$\mu ^{m}$
-almost all
$(x_{1},\ldots ,x_{m})\in [0,1)^{m},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu26.png?pub-status=live)
Proof. We can assume that
$H_{m}>0$
(the case
$H_m=0$
is obvious). Fix
$s_1< s_2< (m-1)H_{m}.$
By the definition of the
$H_{m},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqn3.png?pub-status=live)
for sufficiently large n. Set
$u_{n}=\lfloor {\log n}/{s_1}\rfloor .$
Note that, for any
$(x_{1},\ldots ,x_{m})\in [0,1)^{m}$
with
$M_{n,m}(x_{1},\ldots ,x_{m})=k$
, there exists i with
$0\leq i\leq n-k$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu27.png?pub-status=live)
for
$j=1,\ldots ,k.$
We deduce
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu28.png?pub-status=live)
By the invariance of
$\mu $
under
$T,$
it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu29.png?pub-status=live)
where
$C=\sum _{k=1}^{\infty }\exp \{-{(s_1+s_2)k}/{2}\}.$
Choose an infinite subsequence of integers
$\{n_{k}\}_{k\geq 1},$
where
$n_{k}=k^{L}$
and
$L\cdot {(s_2-s_1)}/{2s_1}>1.$
Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu30.png?pub-status=live)
From the Borel–Cantelli Lemma 2.3, for almost all
$(x_{1},\ldots ,x_{m})\in [0,1)^{m},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu31.png?pub-status=live)
for sufficiently large k. Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu32.png?pub-status=live)
Therefore, by the arbitrariness of
$s_{1},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu33.png?pub-status=live)
This completes the proof.
Proposition 3.2. For
$\mu ^{m}$
-almost all
$(x_{1},\ldots ,x_{m})\in [0,1)^{m},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu34.png?pub-status=live)
Proof. We can assume that
$H_{m}<\infty $
(the case
$H_m=\infty $
is obvious). For
$1\le d<n$
, set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu35.png?pub-status=live)
We denote
$\{(x_{1},\ldots ,x_{m})\in [0,1)^{m}: M_{n,m}(x_{1},\ldots ,x_{m})<k\}$
by
$\{M_{n,m}<k\}$
for brevity.
For any
$s>(m-1)H_{m},$
by the definition of the
$H_{m},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqn4.png?pub-status=live)
for sufficiently large n. Let
$u_{n}=\lfloor {\log n}/{s}\rfloor $
and
$l_{n}=\lfloor {n}/{u_{n}^{2}}\rfloor .$
Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu36.png?pub-status=live)
By Lemma 2.2, it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu37.png?pub-status=live)
where the penultimate inequality follows from (3.2) and the two facts
$ (1-x)<\exp (-x)$
for
$0<x<1$
and
$\lim _{n\to \infty }(1+1/n)^{n}=e$
, and the last inequality follows because
$\theta \rho ^{u_{n}^{2}-u_{n}}{m\cdot n}/{u_{n}^{2}}\rightarrow 0$
as
$n\rightarrow \infty .$
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu38.png?pub-status=live)
From the Borel–Cantelli Lemma, for
$\mu ^{m}$
-almost all
$(x_{1},\ldots ,x_{m})\in [0,1)^{m},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu39.png?pub-status=live)
This completes the proof of Proposition 3.2 and of Theorem 1.1.
4 Proof of Theorem 1.3
This section is devoted to the proof of Theorem 1.3. Our strategy is to construct Cantor-like subsets with full Hausdorff dimension. The proof is divided into several cases according to the values of
$\alpha $
and
$\beta .$
We give a detailed proof for the case
$0<\alpha <\beta <\infty $
and a sketch of the proof for the remaining cases.
Case 1:
$0<\alpha <\beta <\infty .$
Choose two positive integer sequences
$\{n_{k}\}_{k\geq 1}$
and
$\{s_{k}\}_{k\geq 1}$
such that, for each
$k\geq 1,$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqn5.png?pub-status=live)
We readily check that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqn6.png?pub-status=live)
Without loss of generality, we assume that
$n_{k+1}-n_{k}>s_{k}$
for all
$k\geq 1.$
Otherwise, we consider only sufficiently large k. Put
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu40.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu41.png?pub-status=live)
Define a marked set
$\mathbb {K}$
of positive integers by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu42.png?pub-status=live)
Now we define m sequences as follows.
-
• For
$i=1,$
$$ \begin{align*}a_{n_{k}}^{(1)}=1,\ a_{n_{k}+1}^{(1)}=\cdots=a_{n_{k}+s_{k}-1}^{(1)}=1,\ a_{n_{k}+s_{k}}^{(1)}=a_{n_{k}+2s_{k}}^{(1)}= \cdots=a_{n_{k}+\iota_ks_{k}}^{(1)}=1.\end{align*} $$
-
• For
$2\leq i\leq m,$
$$ \begin{align*}a_{n_{k}}^{(i)}=i,\ a_{n_{k}+1}^{(i)}=\cdots=a_{n_{k}+s_{k}-1}^{(i)}=1,\ a_{n_{k}+s_{k}}^{(i)}=a_{n_{k}+2s_{k}}^{(i)}= \cdots=a_{n_{k}+\iota_ks_{k}}^{(i)}=i.\end{align*} $$
Then, for
$i=1,2,\ldots ,m,$
write
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu45.png?pub-status=live)
Now we prove
$\prod _{i=1}^{m}E(\mathbb {K},\{a_{n}^{(i)}\}_{n\geq 1})\subset E(\alpha ,\beta ).$
Fix
$(x_{1},\ldots ,x_{m})\in \prod _{i=1}^{m}E(\mathbb {K},\{a_{n}^{(i)}\}_{n\geq 1})$
for any
$n\geq n_{1}$
and let k be the integer such that
$n_{k}\leq n< n_{k+1}.$
From the construction of the set
$\prod _{i=1}^{m}E(\mathbb {K},\{a_{n}^{(i)}\}_{n\geq 1})$
, we see that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu46.png?pub-status=live)
Further, by (4.1), we deduce that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu47.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu48.png?pub-status=live)
Hence,
$(x_{1},\ldots ,x_{m})\in E(\alpha ,\beta ).$
It remains to prove that the density of
$\mathbb {K}\subset \mathbb {N}$
is zero. For
$n_{k}\leq n<n_{k+1}$
with some
$k\geq 1{:}$
-
• if
$n_{k}\leq n< n_{k}+s_{k},$ then
$\sharp \{i\leq n : i\in \mathbb {K}\}=\sum _{j=1}^{k-1}(m_{j}+\iota _{j})+n-n_{k}+1;$
-
• if
$n_{k}+ls_{k}\leq n<n_{k}+(l+1)s_{k}$ for some
$l$ with
$0< l<\iota _{k},$ then we see that
${\sharp \{i\leq n : i\in \mathbb {K}\}=\sum _{j=1}^{k-1} (s_{j}+\iota _{j})+s_{k}+l};$
-
• if
$n_{k}+\iota _{k}s_{k}\leq n<n_{k+1},$ then
$\sharp \{i\leq n : i\in \mathbb {K}\}=\sum _{j=1}^{k}(s_{j}+\iota _{j}).$
Consequently,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu49.png?pub-status=live)
where the last equality follows by the Stolz–Cesàro theorem and (4.2). By Lemmas 2.4 and 2.5,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000503:S0004972723000503_eqnu50.png?pub-status=live)
Similar arguments apply to the remaining cases. We only give the constructions for the proper sequences
$\{n_k\}_{k\geq 1}$
and
$\{s_k\}_{k\geq 1}.$
Case 2:
$0<\alpha =\beta <\infty .$
Take
$n_{k}=2^{k}$
and
$s_{k}=\lfloor \alpha \log n_{k}\rfloor \text { for } k\geq 1.$
Case 3:
$\alpha =0<\beta <\infty .$
Take
$n_{k}=2^{2^{2^{k}}}$
and
$s_{k}=\lfloor \,\beta \log n_{k}\rfloor \text { for } k\geq 1.$
Case 4:
$\alpha =0, \beta =\infty .$
Take
$n_{k}=2^{2^{2^{k}}}$
and
$s_{k}=\lfloor k\log n_{k}\rfloor ~\text { for } k\geq 1.$
Case 5:
$0<\alpha <\beta =\infty .$
Take
$n_{k}=2^{k!}$
and
$s_{k}=\lfloor \alpha k\log n_{k}\rfloor \text { for } k\geq 1.$
Case 6:
$\alpha =\beta =0.$
Take
$n_{k}=2^{k}$
and
$s_{k}=\lfloor \log \log n_{k}\rfloor \text { for } k\geq 1.$
Case 7:
$\alpha =\beta =\infty .$
Take
$n_{k}=2^{k}$
and
$s_{k}=\lfloor k\log n_{k}\rfloor \text { for } k\geq 1.$