No CrossRef data available.
Article contents
ON THE REAL-VALUED GENERAL SOLUTIONS OF THE D’ALEMBERT EQUATION WITH INVOLUTION
Published online by Cambridge University Press: 23 November 2016
Abstract
We find all real-valued general solutions $f:S\rightarrow \mathbb{R}$ of the d’Alembert functional equation with involution
$$\begin{eqnarray}\displaystyle f(x+y)+f(x+\unicode[STIX]{x1D70E}y)=2f(x)f(y) & & \displaystyle \nonumber\end{eqnarray}$$
$x,y\in S$, where
$S$ is a commutative semigroup and
$\unicode[STIX]{x1D70E}~:~S\rightarrow S$ is an involution. Also, we find the Lebesgue measurable solutions
$f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above functional equation, where
$\unicode[STIX]{x1D70E}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ is a Lebesgue measurable involution. As a direct consequence, we obtain the Lebesgue measurable solutions
$f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the classical d’Alembert functional equation
$$\begin{eqnarray}\displaystyle f(x+y)+f(x-y)=2f(x)f(y) & & \displaystyle \nonumber\end{eqnarray}$$
$x,y\in \mathbb{R}^{n}$. We also exhibit the locally bounded solutions
$f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above equations.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2016 Australian Mathematical Publishing Association Inc.