Published online by Cambridge University Press: 02 May 2017
Let $\unicode[STIX]{x1D70E}=\{\unicode[STIX]{x1D70E}_{i}\mid i\in I\}$ be a partition of the set of all primes
$\mathbb{P}$. Let
$\unicode[STIX]{x1D70E}_{0}\in \unicode[STIX]{x1D6F1}\subseteq \unicode[STIX]{x1D70E}$ and let
$\mathfrak{I}$ be a class of finite
$\unicode[STIX]{x1D70E}_{0}$-groups which is closed under extensions, epimorphic images and subgroups. We say that a finite group
$G$ is
$\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-primary provided
$G$ is either an
$\mathfrak{I}$-group or a
$\unicode[STIX]{x1D70E}_{i}$-group for some
$\unicode[STIX]{x1D70E}_{i}\in \unicode[STIX]{x1D6F1}\setminus \{\unicode[STIX]{x1D70E}_{0}\}$ and we say that a subgroup
$A$ of an arbitrary group
$G^{\ast }$ is
$\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-subnormal in
$G^{\ast }$ if there is a subgroup chain
$A=A_{0}\leq A_{1}\leq \cdots \leq A_{t}=G^{\ast }$ such that either
$A_{i-1}\unlhd A_{i}$ or
$A_{i}/(A_{i-1})_{A_{i}}$ is
$\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-primary for all
$i=1,\ldots ,t$. We prove that the set
${\mathcal{L}}_{\unicode[STIX]{x1D6F1}_{\mathfrak{I}}}(G)$ of all
$\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-subnormal subgroups of
$G$ forms a sublattice of the lattice of all subgroups of
$G$ and we describe the conditions under which the lattice
${\mathcal{L}}_{\unicode[STIX]{x1D6F1}_{\mathfrak{I}}}(G)$ is modular.
The research is supported by NNSF of China (grant no. 11371335) and the Wu Wen-Tsun Key Laboratory of Mathematics of the Chinese Academy of Sciences.