Published online by Cambridge University Press: 19 October 2016
Let $\unicode[STIX]{x1D6E4}$ be a countable discrete group that acts on a unital
$C^{\ast }$ -algebra
$A$ through an action
$\unicode[STIX]{x1D6FC}$ . If
$A$ has a faithful
$\unicode[STIX]{x1D6FC}$ -invariant tracial state
$\unicode[STIX]{x1D70F}$ , then
$\unicode[STIX]{x1D70F}^{\prime }=\unicode[STIX]{x1D70F}\circ {\mathcal{E}}$ is a faithful tracial state of
$A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4}$ where
${\mathcal{E}}:A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4}\rightarrow A$ is the canonical faithful conditional expectation. We show that
$(A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4},\unicode[STIX]{x1D70F}^{\prime })$ has the Haagerup property if and only if both
$(A,\unicode[STIX]{x1D70F})$ and
$\unicode[STIX]{x1D6E4}$ have the Haagerup property. As a consequence, suppose that
$(A\rtimes _{\unicode[STIX]{x1D6FC},r}\unicode[STIX]{x1D6E4},\unicode[STIX]{x1D70F}^{\prime })$ has the Haagerup property where
$\unicode[STIX]{x1D6E4}$ has property
$T$ and
$A$ has strong property
$T$ . Then
$\unicode[STIX]{x1D6E4}$ is finite and
$A$ is residually finite-dimensional.