1 Introduction
Let
$X(p)$
be independent random variables uniformly distributed on the unit circle, where p runs over the prime numbers. The random Euler product of the Riemann zeta-function is defined by
$\zeta (\sigma ,X) = \prod _p (1- ({X(p)}/{p^{\sigma }}))^{-1}$
. The behaviour of
$p^{-it}$
is almost like the independent random variables
$X(p)$
, which indicates that
$\zeta (\sigma , X)$
should be a good model for the Riemann zeta-function.
Bohr and Jessen [Reference Bohr and Jessen1] suggested that
$\log \zeta (\sigma +it)$
converges in distribution to
$\log \zeta (\sigma , X)$
for
$\sigma> 1/2$
. In 1994, Harman and Matsumoto [Reference Harman and Matsumoto4] studied the discrepancy between the distribution of the Riemann zeta-function and that of its random model. For fixed
$\sigma $
with
$1/2 <\sigma \leq 1$
and any
$\varepsilon>0$
, they proved that the discrepancy
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu3.png?pub-status=live)
where the supremum is taken over rectangles
$\mathcal {R}$
with sides parallel to the coordinate axes, satisfies the bound
$D_{\sigma , \zeta } (T) \ll {1}/{(\log T)^{(4\sigma -2)/(21+8\sigma )-\varepsilon }}$
. Here,
$\mathbb {P}_T (f(t) \in \mathcal {R}) := T^{-1} \text {meas}\{T \leq t \leq 2T: f(t) \in \mathcal {R}\}$
. Lamzouri et al. [Reference Lamzouri, Lester and Radziwiłł8] improved the result by showing that
$D_{\sigma , \zeta } (T) \ll {1}/{(\log T)^{\sigma }}$
.
Dong et al. [Reference Dong, Wang and Zhang3] analysed the discrepancy between the distribution of values of Dirichlet L-functions and the distribution of values of random models for Dirichlet L-functions in the q-aspect. Lee [Reference Lee9] investigated the upper bound on the discrepancy between the joint distribution of L-functions on the line
$\sigma = 1/2 + 1/G(T), t \in [T, 2T]$
, and that of their random models, where
$\log \log T \leq G(T) \leq (\log T)/(\log \log T)^2$
.
Let f be a primitive holomorphic cusp form of weight k for
${\mathrm {SL}}_2(\mathbb {Z})$
. The normalised Fourier expansion at the cusp
$\infty $
is
$f(z)=\sum _{n \geq 1}\lambda _f(n)n^{{(k-1)}/{2}}e^{2\pi inz}$
, where
$\lambda _f(n) \in \mathbb {R}$
,
$n = 1, 2, \ldots, $
are normalised eigenvalues of Hecke operators
$T(n)$
with
$\lambda _f(1)=1$
, that is,
$T(n)f=\lambda _f(n)f$
.
According to Deligne [Reference Deligne2], for all prime numbers p, there are complex numbers
$\alpha _f(p)$
and
$\beta _f(p)$
, satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqn1.png?pub-status=live)
The function
$\lambda _f(n)$
is multiplicative. Moreover,
$\lambda _f(p)$
is real and satisfies Deligne’s inequality
$|\lambda _f(n)| \leq d(n)$
for
$n \geq 1$
, where
$d(n)$
is the divisor function. In particular,
$|\lambda _f(p)| \leq 2$
. For
$\mathrm {Re}\, s>1$
, the L-function attached to f is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu4.png?pub-status=live)
For
$\mathrm {Re}\, s>1$
, the Rankin–Selberg L-function associated to f is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu5.png?pub-status=live)
According to [Reference Iwaniec and Kowalski6], for
$\mathrm {Re} s>1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu6.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu7.png?pub-status=live)
For automorphic L-functions, from [Reference Lü10],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqn2.png?pub-status=live)
Recently, Xiao and Zhai [Reference Xiao and Zhai12] studied the discrepancy between the distributions of
$\log L(\sigma +it,f)$
and its corresponding random variable
$\log L(\sigma , f, X)$
. In this article, we investigate the discrepancy between the distribution of the random variable
$\log L (\sigma , f \times f, X)$
and that of
$\log L(\sigma +it, f \times f)$
. Define the Euler product
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu8.png?pub-status=live)
which converges almost surely for
$\sigma> \tfrac 12$
. Consider
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu9.png?pub-status=live)
where the supremum is taken over rectangles
$\mathcal {R}$
with sides parallel to the coordinate axes. We prove the following theorem.
Theorem 1.1. Let
$T>3$
and
$2/3 <\sigma _0 < \sigma < 1$
, where T and
$\sigma _0$
are fixed. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu10.png?pub-status=live)
where the implied constant depends on f and
$\sigma $
.
The proof follows the method in [Reference Lamzouri, Lester and Radziwiłł8]. The range of
$\sigma $
depends on the zero density theorem of
$L(s,f\times f)$
and
$L(s, \mathrm {sym}^2f)$
by noticing that
$L(s, f \times f) = \zeta (s) L(s, \mathrm {sym}^2f)$
. Unfortunately, the zero density of
$L(s, \mathrm {sym}^2f)$
can only be obtained nontrivially when
$2/3 < \sigma \leq 1$
(see [Reference Huang, Zhai and Zhang5]).
2 Preliminaries
This section gathers several preliminary results. Since several proofs are essentially the same as those in [Reference Lamzouri, Lester and Radziwiłł8], we omit their details. For any prime number p and integer
$\nu>0$
, we define
$b_f(p^{\nu }) = |\alpha _f(p)^{\nu } + \beta _f(p)^{\nu }|^2$
. Thanks to (1.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu11.png?pub-status=live)
From probability theory, if the characteristic functions of two real-valued random variables are close, then the corresponding probability distributions are also close. The key to proving Theorem 1.1 is to demonstrate that the joint distribution characteristic function of
$\mathrm {Re} \log L(\sigma + it)$
and
$\mathrm {Im} \log L(\sigma + it)$
can be well estimated. For u,
$v \in \mathbb {R}$
, we define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqn3.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqn4.png?pub-status=live)
Lemma 2.1 [Reference Lamzouri7, Lemma 4.3].
Let
$y>2$
and
$|t|\geq y+3$
be real numbers. Let
$\tfrac 12< \sigma _0 < \sigma \leq 1$
and suppose that the rectangle
$\{s: \sigma _0 < \mathrm {Re} (s) \leq 1, |\mathrm {Im} (s) - t|\leq y+2\}$
does not contain zeros of
$L(s, f \times f)$
. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu12.png?pub-status=live)
where
$\sigma _1 = \min (\sigma _0 + {1}/{\log y}, {(\sigma + \sigma _0)}/{2})$
.
Lemma 2.2. Define
$N(\sigma _0,T)$
as the number of zeros
$\rho _f = \beta _f + i \gamma _f$
of
$L(s, f \times f)$
with
$\sigma _0 \leq \beta _f \leq 1$
and
$|\gamma _f| \leq T$
. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu13.png?pub-status=live)
Proof. Here,
$L(s, f \times f)$
can be written as
$L(s, f \times f) = \zeta (s) L(s, \mathrm {sym}^2f)$
. The result is easily obtained from the zero density of the Riemann zeta-function [Reference Ye and Zhang13] and symmetric square L-functions [Reference Huang, Zhai and Zhang5].
Lemma 2.3. Let
$2/3 < \sigma <1$
and
$3 \leq Y \leq T/2$
. Then, for all
$t \in [T, 2T]$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu14.png?pub-status=live)
except for a set
$\mathcal {D}(T)$
with
$\text {meas}(\mathcal {D}(T)) \ll _f T^{{(10/3-5/2\sigma )}/{(7/3-\sigma )}+\epsilon }Y$
.
Proof. Take
$\sigma _0 = \tfrac 12 (\tfrac 23 + \sigma )$
in Lemma 2.1. The result follows easily from Lemma 2.2.
The details of the next three results can be found in [Reference Xiao and Zhai12].
Lemma 2.4. Let
$2/3 < \sigma <1$
,
$128 \leq y \leq z$
and
$\{b(p)\}$
be any real sequence with
$|b(p)| \leq 4$
. For any positive integer
$k \leq {\log T}/{20 \log z}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu15.png?pub-status=live)
Moreover,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu16.png?pub-status=live)
Proposition 2.5. Let
${2}/{3} < \sigma < 1$
and
$Y = (\log T)^A$
for a fixed
$A \geq 1$
. There exist
$a_1 = a_1(\sigma , A)>0$
and
$a_1' = a_1'(\sigma , A)>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu17.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu18.png?pub-status=live)
Lemma 2.6. Let Y be a large positive real number and
$|z|\leq Y^{\sigma - 1/2}$
. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu19.png?pub-status=live)
Moreover, if u, v are real numbers such that
$|u|+|v| \leq Y^{\sigma - 1/2}$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu20.png?pub-status=live)
Lemma 2.7. Let
$2/3 < \sigma <1$
and
$Y = (\log T)^A$
for a fixed
$A \geq 1$
. For any positive integer
$k \leq \log T/(20 A \log \log z)$
, there exist
$a_2(\sigma )> 0$
and
$a_2'(\sigma )> 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu21.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu22.png?pub-status=live)
Here the implied constants are absolute.
Proof. By using Lemma 2.4, the lemma follows easily from the method in [Reference Lamzouri, Lester and Radziwiłł8, Lemma 3.3].
Lemma 2.8 [Reference Tsang11, Lemma 6].
Let
${2}/{3} < \sigma < 1$
and
$Y = (\log T)^A$
for a fixed
$A \geq 1$
. For any positive integers u, v such that
$u+v \leq \log T/(6A \log \log T)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu23.png?pub-status=live)
with an absolute implied constant.
Proposition 2.9. Let
$2/3 < \sigma <1$
and
$Y = (\log T)^A$
for a fixed
$A \geq 1$
. For all complex numbers
$z_1$
,
$z_2$
, there exist positive constants
$a_3 = a_3(\sigma ,A)>0$
and
$a_4 = a_4(\sigma ,A)>0$
with
$|z_1|$
,
$|z_2| \leq a_3(\log T)^{\sigma }$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu24.png?pub-status=live)
with an absolute implied constant. Here,
$\mathcal {A}(T)$
is the set of those
$t \in [T, 2T]$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu25.png?pub-status=live)
Proof. The proof is the same as that of [Reference Lamzouri, Lester and Radziwiłł8, Proposition 2.3] by using Lemma 2.7, Proposition 2.5 and Lemma 2.8.
Proposition 2.10. Let
$2/3 < \sigma _0 < \sigma <1$
and
$A \geq 1$
be fixed. There exists a constant
$a_5 = a_5(\sigma , A)$
such that for
$|u|$
,
$|v| \leq a_5 (\log T)^{\sigma }$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu26.png?pub-status=live)
with the implied constant depending on
$\sigma _0$
only.
Proof. Follow the general idea of the proof of [Reference Lamzouri, Lester and Radziwiłł8, Theorem 2.1]. Let
$B=B(A)$
be a large enough constant. Let
$ Y = (\log T)^{B/(\sigma - 2/3)}$
. By Lemma 2.3,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu27.png?pub-status=live)
for all
$t \in [T, 2T]$
, except for a set
$\mathcal {D}(T)$
of measure
$T^{1-d(\sigma )}$
for some constant
$d(\sigma )>0$
. Define
$\mathcal {C}(T) = \{t \in [T, 2T], t \notin \mathcal {D} (T)\}$
. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu28.png?pub-status=live)
Let
$\mathcal {A}(T)$
be defined as in Proposition 2.9 and take
$z_1={i}(u-iv)/2$
and
$z_2 = i(u+iv)/2$
in Proposition 2.9. From Proposition 2.5 and Lemma 2.6, the integral above is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu29.png?pub-status=live)
Lemma 2.11 [Reference Lamzouri, Lester and Radziwiłł8, Lemma 7.2].
Let
$\lambda>0$
be a real number. Let
$\chi (y)=1$
if
$y>1$
and
${0}$
otherwise. For any
$c>0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu30.png?pub-status=live)
We cite the following smooth approximation [Reference Lamzouri, Lester and Radziwiłł8] for the indicator function.
Lemma 2.12. Let
$\mathcal {R} = \{z=x+iy \in \mathbb {C}: m_1 < x < m_2, n_1 < y < n_2\}$
for real numbers
$m_1, m_2, n_1, n_2$
. Let
$K>0$
be a real number. For any
$z=x+iy \in \mathbb {C}$
, we denote the indicator function of
$\mathcal {R}$
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu31.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu32.png?pub-status=live)
Here,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu33.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu34.png?pub-status=live)
Lemma 2.13. Let
$2/3 < \sigma <1$
. Let u be a large positive real number. There exist constants
$a_6 = a_6(f, \sigma )$
and
$a_6' = a_6'(f, \sigma )$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu35.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu36.png?pub-status=live)
Proof. Follow the general idea of the proof of [Reference Lamzouri, Lester and Radziwiłł8, Lemma 6.3]. We denote the Bessel function of order 0 by
$J_0(s)$
for all
$s \in \mathbb {R}$
. Note that for any prime p,
$\mathbb {E} (e^{is \mathrm {Re} X(p)}) = \mathbb {E} (e^{is \mathrm {Im} X(p)}) = J_0(s)$
. Since
$\log (1+t)=t+O(t^2)$
for
$ |t|<1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu37.png?pub-status=live)
For
$|s|<1$
, we have
$J_0(s) = 1 - ({s}/{2})^2 + O(s^4)$
. By using (1.2), for some constant
$a_6 = a_6(f, \sigma ), c>0 $
, the product above is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu38.png?pub-status=live)
The second inequality can be derived similarly.
3 Proof of the main theorem
Let
$\mathcal {R}$
be a rectangle with sides parallel to the coordinate axes. Define
$\Psi _T(\mathcal {R}) = \mathbb {P}(\log L(\sigma +it, f \times f) \in \mathcal {R}) \text { and } \Psi (\mathcal {R}) = \mathbb {P}(\log L(\sigma , f \times f, X) \in \mathcal {R})$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu39.png?pub-status=live)
According to Lemma 2.3 and Proposition 2.5, for some constant
$a_7>0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu40.png?pub-status=live)
Similarly to [Reference Xiao and Zhai12], by using Lemmas 2.6 and 2.11, we can obtain the relationship between
$\Psi (\mathcal {R})$
and
$\Psi (\widetilde {\mathcal {R}})$
: for some constant
$a_7'>0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu41.png?pub-status=live)
Let
$\mathcal {S}$
be the set of rectangles
$\mathcal {R} \subset [-(\log T)^3, (\log T)^3]\times [-(\log T)^3, (\log T)^3]$
with sides parallel to the coordinate axes. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu42.png?pub-status=live)
In light of Lemma 2.12, choose
$K = a_8(\log T)^{\sigma }$
, for some
$a_8> 0$
, and
$|m_1|, |m_2|, |n_1|, |n_2| \leq (\log T)^3$
. Then it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqn5.png?pub-status=live)
and, in addition,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu43.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqn6.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu44.png?pub-status=live)
First, we treat the main term of (3.1):
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu45.png?pub-status=live)
where
$\Phi _{\sigma ,T}$
is defined by (2.1). Since
$0 \leq G(u) \leq 2/\pi $
and
$|f_{\alpha , \beta }(u)| \leq \pi u |\beta - \alpha |$
, by Proposition 2.10,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu46.png?pub-status=live)
Moreover,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu47.png?pub-status=live)
Here,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu48.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu49.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu50.png?pub-status=live)
Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqn7.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu51.png?pub-status=live)
Notice that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqn8.png?pub-status=live)
To bound
$E_1$
, we use (3.4) to rewrite (3.2):
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu52.png?pub-status=live)
From Proposition 2.10,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu53.png?pub-status=live)
uniformly for all
$m \in \mathbb {R}$
. Lemma 2.13 implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu54.png?pub-status=live)
The bound
$J_T(K, n) \ll {1}/{K}$
can be obtained using the same method. Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqn9.png?pub-status=live)
Then, using (2.2), (3.4) and Lemma 2.13,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu55.png?pub-status=live)
uniformly for all
$m \in \mathbb {R}$
. Similarly, we can obtain
$J_{\mathrm {rand}} (K, n) \ll {1}/{K}$
, uniformly for all
$n \in \mathbb {R}$
. Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqn10.png?pub-status=live)
Combining the estimates with (3.3), (3.5) and (3.6),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241017041207704-0256:S0004972724000790:S0004972724000790_eqnu56.png?pub-status=live)
which completes the proof.