Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-02-11T06:41:06.638Z Has data issue: false hasContentIssue false

AXIOMATISABILITY OF THE CLASS OF MONOLITHIC GROUPS IN A VARIETY OF NILPOTENT GROUPS

Published online by Cambridge University Press:  16 January 2020

JOSHUA T. GRICE*
Affiliation:
Department of Mathematics, University of South Carolina, Columbia, SC29208, USA email jtgrice@math.sc.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The class of all monolithic (that is, subdirectly irreducible) groups belonging to a variety generated by a finite nilpotent group can be axiomatised by a finite set of elementary sentences.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

References

Baker, K. A. and Wang, J., ‘Definable principal subcongruences’, Algebra Universalis 47(2) (2002), 145151.CrossRefGoogle Scholar
Birkhoff, G., ‘On the structure of abstract algebras’, Math. Proc. Cambridge Philos. Soc. 31(4) (1935), 433454.CrossRefGoogle Scholar
Birkhoff, G., ‘Subdirect unions in universal algebra’, Bull. Amer. Math. Soc. 50 (1944), 764768.CrossRefGoogle Scholar
Dummit, D. S. and Foote, R. M., Abstract Algebra, 3rd edn (John Wiley & Sons, Hoboken, NJ, 2004).Google Scholar
Freese, R. and McKenzie, R., Commutator Theory for Congruence Modular Varieties, London Mathematical Society Lecture Note Series, 125 (Cambridge University Press, Cambridge, 1987).Google Scholar
Lyndon, R. C., ‘Two notes on nilpotent groups’, Proc. Amer. Math. Soc. 3 (1952), 579579.CrossRefGoogle Scholar
Neumann, H., Varieties of Groups, 1st edn, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge, 37 (Springer, Berlin, 1967).10.1007/978-3-642-88599-0CrossRefGoogle Scholar
Oates, S. and Powell, M. B., ‘Identical relations in finite groups’, J. Algebra 1 (1964), 1139.CrossRefGoogle Scholar