No CrossRef data available.
Article contents
Neither neural networks nor the language-of-thought alone make a complete game
Published online by Cambridge University Press: 28 September 2023
Abstract
Cognitive science has evolved since early disputes between radical empiricism and radical nativism. The authors are reacting to the revival of radical empiricism spurred by recent successes in deep neural network (NN) models. We agree that language-like mental representations (language-of-thoughts [LoTs]) are part of the best game in town, but they cannot be understood independent of the other players.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press
References
Bass, I., Smith, K. A., Bonawitz, E., & Ullman, T. D. (2021). Partial mental simulation explains fallacies in physical reasoning. Cognitive Neuropsychology, 38(7–8), 413–424.CrossRefGoogle ScholarPubMed
Goodman, N. D., Tenenbaum, J. B., & Gerstenberg, T. (2014). Concepts in a probabilistic language of thought. Center for Brains, Minds and Machines (CBMM).Google Scholar
Hartshorne, J. K., Jennings, M. V., Gerstenberg, T., & Tenenbaum, J. (2019). When circumstances change, update your pronouns. Cognitive Science (p. 3472).Google Scholar
Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum, J. B. (2016). The naïve utility calculus: Computational principles underlying commonsense psychology. Trends in Cognitive Sciences, 20(8), 589–604.CrossRefGoogle ScholarPubMed
Oved, I. (2015). Hypothesis formation and testing in the acquisition of representationally simple concepts. Philosophical Studies 172(1), 227–247.CrossRefGoogle Scholar
Pollock, J., & Oved, I. (2005). Vision, knowledge, and the mystery link. Philosophical Perspectives, 19, 309–351.CrossRefGoogle Scholar
Pustejovsky, J., & Krishnaswamy, N. (2022). Multimodal semantics for affordances and actions. In Human–Computer Interaction. Theoretical Approaches and Design Methods: Thematic Area, Held as Part of the 24th HCI International Conference, Proceedings, HCII 2022, Virtual Event, June 26–July 1, 2022, Part I (pp. 137–160). Cham: Springer International Publishing.Google Scholar
Ullman, T. D., Spelke, E., Battaglia, P., & Tenenbaum, J. B. (2017). Mind games: Game engines as an architecture for intuitive physics. Trends in Cognitive Sciences, 21(9), 649–665.CrossRefGoogle ScholarPubMed
Wu, J., Yildirim, I., Lim, J. J., Freeman, B., & Tenenbaum, J. (2015). Galileo: Perceiving physical object properties by integrating a physics engine with deep learning. Advances in Neural Information Processing Systems, 28.Google Scholar
Target article
The best game in town: The reemergence of the language-of-thought hypothesis across the cognitive sciences
Related commentaries (30)
A language of episodic thought?
Advanced testing of the LoT hypothesis by social reasoning
Animal thought exceeds language-of-thought
Compositionality in visual perception
Concept learning in a probabilistic language-of-thought. How is it possible and what does it presuppose?
Developmental and multiple languages-of-thought
Do nonlinguistic creatures deploy mental symbols for logical connectives in reasoning?
Evidence for LoTH: Slim pickings
Incomplete language-of-thought in infancy
Is core knowledge in the format of LOT?
Is evidence of language-like properties evidence of a language-of-thought architecture?
Is language-of-thought the best game in the town we live?
Language-of-thought hypothesis: Wrong, but sometimes useful?
Linguistic meanings in mind
Linguistic structure and the languages-of-thought
Natural logic and baby LoTH
Neither neural networks nor the language-of-thought alone make a complete game
Never not the best: LoT and the explanation of person-level psychology
On the hazards of relating representations and inductive biases
Perception is iconic, perceptual working memory is discursive
Properties of LoTs: The footprints or the bear itself?
Putting relating at the core of language-of-thought
Representational structures only make their mark over time: A case from memory
Stop me if you've heard this one before: The Chomskyan hammer and the Skinnerian nail
The computational and the representational language-of-thought hypotheses
The language of tactile thought
The language-of-thought as a working hypothesis for developmental cognitive science
The reemergence of the language-of-thought hypothesis: Consequences for the development of the logic of thought
Toward biologically plausible artificial vision
Using the sender–receiver framework to understand the evolution of languages-of-thought
Author response
The language-of-thought hypothesis as a working hypothesis in cognitive science