Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-06T09:51:52.202Z Has data issue: false hasContentIssue false

Connectionist modelling in psychology: A localist manifesto

Published online by Cambridge University Press:  30 August 2019

Mike Page
Affiliation:
Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 2EF, United Kingdommike.page@mrc-cbu.cam.ac.ukwww.mrc-cbu.cam.ac.uk/
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the last decade, fully distributed models have become dominant in connectionist psychological modelling, whereas the virtues of localist models have been underestimated. This target article illustrates some of the benefits of localist modelling. Localist models are characterized by the presence of localist representations rather than the absence of distributed representations. A generalized localist model is proposed that exhibits many of the properties of fully distributed models. It can be applied to a number of problems that are difficult for fully distributed models, and its applicability can be extended through comparisons with a number of classic mathematical models of behaviour. There are reasons why localist models have been underused, though these often misconstrue the localist position. In particular, many conclusions about connectionist representation, based on neuroscientific observation, can be called into question. There are still some problems inherent in the application of fully distributed systems and some inadequacies in proposed solutions to these problems. In the domain of psychological modelling, localist modelling is to be preferred.

Type
Research Article
Copyright
2000 Cambridge University Press