Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-11T08:49:28.764Z Has data issue: false hasContentIssue false

Molecular tools for understanding population structure in Antarctic species

Published online by Cambridge University Press:  06 May 2004

Patrick M. Gaffney
Affiliation:
College of Marine Studies, University of Delaware, Lewes, DE 19958, USA pgaffney@udel.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the last decade, methods for detecting DNA polymorphisms have proliferated at a bewildering pace. Today the investigator must choose among various types of genetic markers as well as between a variety of methods for discovering and screening polymorphisms. Polymorphisms useful for the analysis of population structure are found in both mitochondrial and nuclear genomes. Marker development may proceed along two routes: 1) discovery of species–specific markers, and 2) application of universal methods. Species-specific markers are based on sequence data from the target species or close relatives, whereas universal markers are based on the use of polymerase chain reaction (PCR) primers targeted to regions highly conserved across diverse taxa. Markers commonly employed include mitochondrial DNA polymorphisms, microsatellites, anonymous nuclear loci and known genes (both coding and noncoding regions). Methods for detecting polymorphisms range from technically simple (RFLP analysis) to more sophisticated mutation scanning methods. We review the application of these approaches to several key Antarctic species (the Patagonian toothfish Dissostichus eleginoides, the mackerel icefish Champsocephalus gunnari, and the squid Martialia hyadesi Rochebrune & Mabille, 1889) and present preliminary data on genetic polymorphisms in toothfish and icefish.

Type
Life Sciences
Copyright
© Antarctic Science Ltd 2000