Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-02-05T22:41:12.349Z Has data issue: false hasContentIssue false

Distribution and origin of patterned ground on Mullins Valley debris-covered glacier, Antarctica: the roles of ice flow and sublimation

Published online by Cambridge University Press:  24 August 2006

Joseph S. Levy
Affiliation:
Brown University, Department of Geological Sciences, Providence, RI, USA
David R. Marchant
Affiliation:
Boston University, Department of Earth Sciences, Boston, MA, USA
James W. Head
Affiliation:
Brown University, Department of Geological Sciences, Providence, RI, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We map polygonally patterned ground formed in sublimation tills that overlie debris-covered glaciers in Mullins Valley and central Beacon Valley, in southern Victoria Land, Antarctica, and distinguish five morphological zones. Where the Mullins Valley debris-covered glacier debouches into Beacon Valley, polygonal patterning transitions from radial (orthogonal) intersections to non-oriented (hexagonal) intersections, providing a time-series of polygon evolution within a single microclimate. We offer the following model for polygon formation and evolution in the Mullins Valley system. Near-vertical cracks that ultimately outline polygons are produced by thermal contraction in the glacier ice. Some of these cracks may initially be oriented radial to maximum surface velocities by pre-existing structural stresses and material weaknesses in the glacier ice. In areas of relatively rapid flow, polygons are oriented down-valley forming an overall fan pattern radial to maximum ice velocity. As glacier flow moves the cracks down-valley, minor variations in flow rate deform polygons, giving rise to deformed radial polygons. Non-oriented (largely hexagonal) polygons commonly form in regions of stagnant and/or near-stagnant ice. We propose that orientation and morphology of contraction-crack polygons in sublimation tills can thus be used as an indicator of rates of subsurface ice flow.

Type
EARTH SCIENCES
Copyright
© Antarctic Science Ltd 2006