Hostname: page-component-7b9c58cd5d-7g5wt Total loading time: 0 Render date: 2025-03-15T19:28:04.369Z Has data issue: false hasContentIssue false

Australodelphis mirus, a bizarre new toothless ziphiid-like fossil dolphin (Cetacea: Delphinidae) from the Pliocene of Vestfold Hills, East Antarctica

Published online by Cambridge University Press:  19 April 2004

R. Ewan Fordyce
Affiliation:
Department of Geology, University of Otago, PO Box 56, Dunedin, New Zealand
Patrick G. Quilty
Affiliation:
Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
James Daniels
Affiliation:
Department of Geology, University of Otago, PO Box 56, Dunedin, New Zealand School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Australodelphis mirus (Delphinidae n. gen., n. sp) is a small extinct Early Pliocene dolphin known from five individuals from shallow-water strata of the Sørsdal Formation, Vestfold Hills, East Antarctica. Australodelphis mirus is the first higher vertebrate named from the Oligocene-Pleistocene interval on land in Antarctica, and is the first cetacean fossil from the polar margin of circum-Antarctic Southern Ocean that postdates the break-up of Gondwana. The dolphin is convergent in skull form with some living beaked whales (Mesoplodon spp.; Family Ziphiidae) in its long, narrow and toothless upper jaw and face, but skull suture patterns, basicranial sinuses, and ear-bones indicate close relationship with living long-beaked dolphins (Delphinidae). Australodelphis mirus perhaps was a suction-feeding squid-eater which occupied quiet near-shore shelf waters influenced by glaciers but probably lacking major sea-ice. Possible ecological equivalents of A. mirus (small ziphiids, long-beaked dolphins) do not occupy Antarctic waters today, perhaps excluded by cold conditions and/or sea-ice cover. Earlier Pliocene cetaceans worldwide reveal significant extinct and sometimes bizarre taxa, and extant families with ranges quite different from today, pointing to climate-related changes in cetacean ecology in the last 2–3 million years.

Type
Earth Sciences
Copyright
© Antarctic Science Ltd 2002