Hostname: page-component-7b9c58cd5d-9k27k Total loading time: 0 Render date: 2025-03-15T13:35:52.677Z Has data issue: false hasContentIssue false

Optimal barrier strategy for spectrally negative Lévy process discounted by a class of exponential Lévy processes

Published online by Cambridge University Press:  27 February 2018

Huanqun Jiang*
Affiliation:
Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA
*
*Correspondence to: Huanqun Jiang, Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA. Tel: (541)737 4686. E-mail: jiangh@math.oregonstate.edu
Rights & Permissions [Opens in a new window]

Abstract

In this paper, we extend the optimality of the barrier strategy for the dividend payment problem to the setting that the underlying surplus process is a spectrally negative Lévy process and the discounting factor is an exponential Lévy process. The proof of the main result uses the fluctuation identities of spectrally negative Lévy processes. This extends recent results of Eisenberg for the case where the accumulated interest rate and surplus process are independent Brownian motions with drift.

Type
Paper
Copyright
© Institute and Faculty of Actuaries 2018 

1. Introduction

In the collective risk theory, there is a classical and interesting question about how to distribute the dividends from the insurance company to its shareholders. This problem is proposed by De Finetti (Reference Avram, Kyprianou and Pistorius1957) on the basis that it would be unrealistic for the capital of the insurance company to grow unlimitedly.

The problem is simplified to a mathematical model. The current capital the company holds is interpreted as a surplus process involving uncertainty. The capital is mainly affected by two factors: premiums received from selling policies and payments committed to the policyholders when claims arrive. Since the simplest scenario is considered here, the collective premiums are assumed to increase linearly and the payments (packed contracts) are identically and independently distributed. The central idea of this problem is to maximise the expected discounted dividend payment paid to shareholders under the interest rate with an optimal strategy. This problem is well illustrated and elaborated in the surveys (Hipp, Reference Eisenberg and Krhner2004; Schmidli, Reference Jiang and Pistorius2007; Avanzi, Reference Avanzi2009).

This stochastic control problem formally originates in Monique & Shiryaev (Reference Kyprianou1995) and Asmussen & Taksar (Reference Asmussen and Taksar1997) where the surplus process is approximated by the linear (constant coefficient) diffusion. They analytically show that the optimal strategy for the dividend problem is to pay out the excessive part of the surplus of the company above some fixed level but pay out nothing if not. The name given to this strategy is constant barrier strategy. This will be the main strategy considered throughout this paper. Several years later, Gerber & Shiu (Reference Hipp2006) obtained the optimal (constant) barrier strategy when the surplus process is approximated by a compound Poisson process for which the claim size is exponentially distributed. While starting from the beginning of the 21st century, with the fruitful results (Bertoin, Reference Bayraktar, Kyprianou and Yamazaki1998; Avram et al., Reference Bertoin2004; Kyprianou, Reference Monique and Shiryaev2006) on Lévy process and especially its associated fluctuation identities, Avram et al. (Reference De Finetti2007) show that the barrier dividend strategy can be optimal under some technical conditions involving the (extended) infinitesimal generator in the case that the surplus process is a spectrally negative Lévy process; i.e., a Lévy process for which only negative jump discontinuities are permitted. Interestingly after that, Loeffen (Reference Protter2008) proves the main result of Avram et al. (Reference De Finetti2007) with a different approach and provides a new sufficient condition. It establishes the optimality of the barrier strategy for spectrally negative Lévy process, given that the q-scale function of that Lévy process has a strictly convex derivative. The q-scale functions are naturally associated with boundary crossing formulae for such Lévy processes and are defined below.

Recently, some interest in this field has shifted to the incorporation of the macroeconomic effect, since it is strongly believed that the future revenue of the insurance company will depend on macroeconomic factors. One particular factor of macroeconomics is the interest rate. In the literature it has been justified that the dividend strategy will be determined by the state of the interest rate which can change randomly over the time. Under this consideration, one typical model named Markov regime-switching (Jiang & Pistorius, Reference Loeffen2012; Akyildirim et al., Reference Akyildirim, Güney, Rochet and Soner2014) is introduced to give a reasonable solution. It can be shown that the optimal strategy is still barrier-type for each regime.

To extend the finitely discrete regime to a continuous one, Eisenberg (Reference Avram, Palmowski and Pistorius2015) considers the case that the accumulated interest rate is a linear Brownian motion (with constant coefficients). It shows that the optimality of the barrier strategy is again achieved in this case. Specifically Eisenberg (Reference Avram, Palmowski and Pistorius2015) obtains the Hamilton-Jacobi-Bellman (HJB) equation below which is equation (1) of Eisenberg (Reference Avram, Palmowski and Pistorius2015) under the assumptions that the surplus process is a linear Brownian motion and the discounting factor is a geometric Brownian motion:

$$\mu V_{x} {\plus}{{\sigma ^{2} } \over 2}V_{{xx}} {\minus}mV_{r} {\plus}{{\eta ^{2} } \over 2}V_{{rr}} {\plus}\mathop {\rm sup}\limits_{0\leq c\leq {\epsilon}} \left\{ {c({\rm e}^{{{\minus}r}} {\minus}V_{x} )} \right\}{\equals}0$$

To determine the optimal strategy, the author argues the separation form V(x, r)=er F(x) and then shows that it solves this HJB equation. Based on the solution, she finds the barrier strategy to be optimal in this case. This dividend maximisation setting is based on the Dothan model, which assumes the geometric Brownian motion for short rate. Therefore, it is appropriate to impose the geometric Brownian motion on the discounting factor. In other words, the discounting factor could be greater than 1. From this perspective, Eisenberg & Krhner (Reference Gerber and Shiu2017) explores the optimal dividend problem in the situation that the dividends are paid in different currencies. This problem formulation is due to the fact that the currency exchange rate usually fluctuates with frequent jumps. Because of this, the exponential Lévy process is introduced to model the fluctuation of exchange rate. As a result, this is interpreted as a dividend optimisation problem discounted by exponential Lévy processes. By using the similar techniques for solving the HJB equation in Eisenberg (Reference Avram, Palmowski and Pistorius2015), Eisenberg & Krhner (Reference Gerber and Shiu2017) prove the optimality of barrier strategy in this case.

This paper will extend these results with a different method and study a general case when the accumulated interest rate is modelled by some class of Lévy processes and the surplus process is a spectrally negative Lévy process. Here, we take advantage of some ideas in Avram et al. (Reference De Finetti2007) to develop our solution strategy. Compared with Eisenberg (Reference Avram, Palmowski and Pistorius2015) and Eisenberg & Krhner (Reference Gerber and Shiu2017), the improvement here is that the proof of optimality will extend their results to this more general framework.

2. Preliminaries

2.1. General settings

Let X={X t ; t≥0} be a Markov process and the probability space be $$({\rm \Omega },{\scr F},{\Bbb F},{\Bbb P})$$ where $${\scr F}_{t} $$ is generated by {X s }0≤st and $${\Bbb F}{\equals}\left\{ {{\cal F}_{t} ,t\geq 0} \right\}$$ . Denote the translated probability measure for X by $${\Bbb P}_{x} $$ if X 0=x and $${\Bbb P}{\equals}{\Bbb P}_{0} $$ if X 0=0. Correspondingly we use expectation E x to denote the integration with respect to probability measure $${\Bbb P}_{x} $$ .

Definition 2.1 X is a Lévy process if X has a càdlàg sample path and its increment X t+s X t is independent of $${\cal F}_{t} $$ and is identically distributed as X s , for each s, t≥0.

Generally a Lévy process can make jumps in both positive and negative directions. If a Lévy process only makes non-positive jumps, it is referred to as a spectrally negative Lévy process. Suppose that X is a spectrally negative Lévy process. Because X only makes negative jumps, its moment generating function is well-defined at least for θ≥0. Specifically, $$E[\rm {\rm e}^{{\theta X_{t} }} ]{\equals}\rm {\rm e}^{{\phi (\theta )t}} $$ exists for t≥0, where ϕ(θ) is its Laplace exponent and it is given by

(2.1) $$\phi (\theta )\,{\equals}\,\gamma \theta {\plus}{1 \over 2}\sigma ^{2} \theta ^{2} {\minus}\mathop{\int}\limits_0^\infty (1{\minus}{\rm e}^{{{\minus}\theta x}} {\minus}\theta x{\bf{1}} _{{\left\{ {0\,\lt\,x\,\lt\,1} \right\}}} )\nu (dx)$$

In the above formula, γ, σ and μ characterise Lévy process X and they are called a Lévy triplet (γ, σ, ν) of X.

The Lévy triplet (γ, σ, ν) satisfies the following conditions:

  1. (1) The Lévy measure ν is a positive Radon measure on (0, ∞).

  2. (2) $$\mathop{\int}\limits_0^\infty \left( {1\wedge x\!^{2} } \right)\nu (dx)\,\,\lt\,\infty$$ .

Suppose in the following that the underlying capital process is a spectrally negative Lévy process X in the absence of dividend payments. We shall restrict the optimisation problem to Markov strategies. Denote the dividend strategy by $$\pi {\equals}\left\{ {L_{t}^{\pi } \,\\;\,t\geq 0} \right\}$$ , a left-continuous, non-decreasing, $${\cal F}_{t} $$ -adapted process starting at 0. L π is the accumulated dividend process under the dividend strategy π. By this, under the dividend strategy π, the dividend payment rate at time t can be denoted by $$dL_{t}^{\pi } $$ . Associated with the underlying capital process X and dividend process L π , the surplus process will be defined by $$U_{t}^{\pi } {\equals}X_{t} {\minus}L_{t}^{\pi } ,\,{\rm for}\, t\geq 0$$ . The ruin time, which is the moment that the surplus process goes below 0, is denoted by $$\tau _{0}^{{\minus}} {\equals}{\rm inf}\left\{ {t\geq 0{\rm \,\mid\,}U_{t}^{\pi } \,\lt\,0} \right\}$$ . A strategy π is called admissible if $$L_{{t{\plus}}}^{\pi } {\minus}L_{t}^{\pi } \leq U_{t}^{\pi } ,\,{\rm for}\,t\geq 0$$ . Denote the collection of all admissible dividend strategies by Π.

Suppose the interest rate r is a positive constant for which the accumulated interest rate is a linear deterministic function rt, for t≥0. The expected discounted dividend payment under strategy π is

$$v_{\pi } (x)\,{\equals}\,E_{x} \left[ {\mathop{\int}\limits_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}rs}} dL_{s}^{\pi } } \right]$$

which is a function dependent on the initial capital X 0=x. The maximal expected discounted dividend payment is denoted by

$$v_{{\asterisk}} (x)\,{\equals}\,\mathop {{\rm sup}}\limits_{\pi \in{\rm \Pi }} E_{x} \left[ {\mathop{\int}\limits_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}rs}} dL_{s}^{\pi } } \right]$$

2.2. Exponential Lévy process as the discounting factor

The new change to the classical setting is that the interest rate r is replaced by a stochastic process whose accumulated process is modelled by a Lévy process R={R t ; t≥0}. Accordingly the objective maximal expected discounted dividend payment can be given as

$$v_{{\asterisk}} (x,r)\,{\equals}\,\mathop {{\rm sup}}\limits_{\pi \in{\rm \Pi }} \;E_{{x,r}} \left[ {\mathop{\int}\limits_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}R_{{s^{{\minus}} }} }} dL_{s}^{\pi } } \right]$$

where the surplus process, dividend process and ruin time are not changed and r is the initial state of R, i.e., R 0=r.

For convenience, v *(x, r) is called the value function.

Remark 2.1 The stochastic integtal $$\mathop{\int}\nolimits_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}R_{{s^{{\minus}} }} }} dL_{s}^{\pi } $$ is defined in semimartingale theory where it is important to evaluate the integrand to the left of jumps; e.g., see chapter 2 of Protter (Reference Revuz and Yor2005).

2.3. Classical theorems and definitions

For the results of this paper we require the following notion of the extended infinitesimal generator for the general Markov processes.

Definition 2.2 (Extended infinitesimal generator) (see Revuz & Yor, Reference Sato2013) Suppose that X is a Markov process. A Borel-measurable function f is said to belong to the domain of the extended infinitesimal generator if there exists a Borel-measurable function g such that $$\mathop{\int}\nolimits_0^t \left| {g(X_{s} )} \right|ds\,\lt\,\infty$$ for each t, and $$f(X_{t} ){\minus}f(X_{0} ){\minus}\nomathop{\int}\limits_0^t g(X_{s} )ds$$ is a ( $${\cal F}_{t} ,{\Bbb P}_{x} $$ ) right-continuous martingale for every x. If we define Af:=g, then A is called the extended infinitesimal generator and its domain is denoted by $${\cal D}_{A} $$ .

Theorem 2.1 Suppose a Lévy process X has the Lévy triplet (γ, σ, ν), where Lévy measure ν is defined on $${\Bbb R}$$ and satisfies $$\mathop{\int}_{\Bbb R} \left( {1\wedge x^{2} } \right)\nu (dx)\,\lt\,\infty$$ . Given a function $$f\in{\Bbb C}^{2} ({\Bbb R})$$ , its extended infinitesimal generatorFootnote 1 is

$$Af(x)\,{\equals}\,\gamma f\prime(x){\plus}{1 \over 2}\sigma ^{2} f\prime\prime(x){\plus}\mathop{\int}_{\Bbb R} \left( {f(x{\plus}y){\minus}f(x){\minus}{y \over {1{\plus}y^{2} }}f\prime(x)} \right)\nu (dy)$$

3. Fluctuation Identities and Eigenfunction

3.1. Eigenfunction of Lévy process under constraints

Proposition 3.1 Suppose R={R t } t≥0 is a Lévy process starting at r and it satisfies the following conditions: Assuming $$a\in{\Bbb R}$$ and a≠0

(1) $$E\left[ {{\rm e}^{{aR_{t} }} } \right]$$ is continuous at t=0 (2) $$E\left[ {{\rm e}^{{aR_{1} }} } \right]\,\lt\,\infty$$

Then an eigenfunction of the extended infinitesimal generator L of R={R t } t≥0 is given by e ar and corresponding eigenvalue is ϕ(a), where ϕ(a) is the Laplace exponent of R.

Proof: Denote $$E\left[ {{\rm e}^{{aR_{t} }} } \right]$$ by f a (t). Since $$E\left[ {{\rm e}^{{aR_{t} }} } \right]$$ satisfies the conditions in Proposition 3.1, f a (t) is continuous at x=0 and f a (1)<∞. Consider the case that {R t } starts at R 0=0. Then using stationary independent increments, we have $$E\left[ {{\rm e}^{{aR_{{t{\plus}s}} }} } \right]{\equals}E\left[ {{\rm e}^{{a\left( {R_{{t{\plus}s}} {\minus}R_{s} {\plus}R_{s} } \right)}} } \right]{\equals}E\left[ {{\rm e}^{{a\left( {R_{{t{\plus}s}} {\minus}R_{s} } \right)}} } \right]E\left[ {{\rm e}^{{aR_{s} }} } \right]{\equals}E\left[ {{\rm e}^{{aR_{t} }} } \right]E\left[ {{\rm e}^{{aR_{s} }} } \right]$$ , i.e., f a (t+s)=f a (t)f a (s). Thus, $$f_{a} (t){\equals}{\rm e}^{{{\rm ln}\left( {f_{a} (1)} \right)t}} $$ . Since $$E\left[ {{\rm e}^{{aR_{t} }} } \right]$$ exists, $$E\left[ {{\rm e}^{{aR_{t} }} } \right]{\equals}{\rm e}^{{\phi (a)t}} $$ where ϕ(a) is the Laplace exponent with parameter a. Next let us show that e ar is an eigenfunction for the extended infinitesimal generator L of R starting at r. By the definition, Lf:=g is an extended infinitesimal generator if $$f(R_{t} ){\minus}f(r){\minus}\mathop{\int}\nolimits_0^t g(R_{s} )ds$$ is a martingale. As discussed above, $$E_{r} \left[ {{\rm e}^{{aR_{t} }} } \right]\,{\equals}\,E_{r} \left[ {{\rm e}^{{a\left( {R_{t} {\minus}r{\plus}r} \right)}} } \right]{\equals}{\rm e}^{{ar}} E_{r} \left[ {{\rm e}^{{a\left( {R_{t} {\minus}r} \right)}} } \right]$$ . It can be noticed that {R t r} t≥0 is still a Lévy process which starts at 0, and hence $$E_{r} \left[ {{\rm e}^{{a\left( {R_{t} {\minus}r} \right)}} } \right]{\equals}{\rm e}^{{\phi (a)t}} $$ . For now, assume that $${\rm e}^{{aR_{t} }} {\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\nplimits_0^t L{\rm e}^{{aR_{s} }} ds$$ is a martingale for each r (we will prove this result below). By the definition of the martingale, $$E_{r} \big[ {{\rm e}^{{aR_{t} }} {\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\nolimits_0^t L{\rm e}^{{aR_{s} }} ds} \big]{\equals}{\rm e}^{{ar}} {\minus}{\rm e}^{{ar}} {\equals}0$$ . Thus, $$E_{r} \big[ {{\rm e}^{{aR_{t} }} {\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\nolimits_0^t L{\rm e}^{{aR_{s} }} ds} \right]\,{\equals}\,0\Rightarrow E_{r} \big[ {{\rm e}^{{aR_{t} }} {\minus}{\rm e}^{{ar}} } \big]\,{\equals}\,E_{r} \big[ {\mathop{\int}\nolimits_0^t L{\rm e}^{{aR_{s} }} ds} \big].$$ By stochastic Fubini theorem, $$E_{r} \big[ {\mathop{\int}\nolimits_0^t L{\rm e}^{{aR_{s} }} ds} \right]{\equals}\mathop{\int}\nolimits_0^t E_{r} \left[ {L{\rm e}^{{aR_{s} }} } \big]ds$$ . Then we have the following calculations:

$$\eqalignno{ &#x0026; {d \over {dt}}E_{r} \left[ {{\rm e}^{{aR_{t} }} {\minus}{\rm e}^{{ar}} } \right]\left| {_{{t{\equals}0}} \,{\equals}\,{d \over {dt}}E_{r} \left[ {\mathop{\int}\limits_0^t L{\rm e}^{{aR_{s} }} ds} \right]} \right|_{{t{\equals}0}} \cr &#x0026; {d \over {dt}}{\rm e}^{{ar}} \left( {{\rm e}^{{\phi (a)t}} {\minus}1} \right)\left| {_{{t{\equals}0}} \,{\equals}\,{d \over {dt}}\mathop{\int}\limits_0^t E_{r} \left[ {L{\rm e}^{{aR_{s} }} } \right]ds} \right|_{{t{\equals}0}} \cr &#x0026; \phi (a){\rm e}^{{ar}} {\equals}E_{r} [L{\rm e}^{{ar}} ]\,{\equals}\,L{\rm e}^{{ar}} $$

The last equality comes from the fact that the term Le ar inside the expectation is a function of r. Thus Le ar =ϕ(a)e ar . Note that $$\mathop{\int}\nolimits_0^t \left| {\phi (a){\rm e}^{{aR_{s} }} } \right|ds{\equals}\left| {\phi (a)} \right|\mathop{\int}\nolimits_0^t {\rm e}^{{aR_{s} }} ds$$ . We will show that $$\mathop{\int}\nolimits_0^t \left| {\phi (a){\rm e}^{{aR_{s} }} } \right|ds\,\lt\,\infty$$ a.s. for each t. It is assumed that $$E_{r} \big[ {\mathop{\int}\nolimits_0^t {\rm e}^{{aR_{s} }} ds} \big]\,\lt\,\infty$$ . Therefore, $$\mathop{\int}\nolimits_0^t {\rm e}^{{aR_{s} }} ds$$ is finite with probability one. Note that Laplace exponent is bounded as well for a constant a, i.e., |ϕ(a)|<∞. That is to say, $$\mathop{\int}\nolimits_0^t \left| {\phi (a){\rm e}^{{aR_{s} }} } \right|ds{\equals}\left| {\phi (a)} \right|\mathop{\int}\nolimits_0^t {\rm e}^{{aR_{s} }} ds\,\lt\,\infty$$ a.s. for each t. It remains to show that $${\rm e}^{{aR_{t} }} {\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\nolimits_0^t \phi (a){\rm e}^{{aR_{s} }} ds$$ is a martingale. Letting 0≤u<t and $$Y_{t} {\equals}{\rm e}^{{aR_{t} }} {\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\nolimits_0^t \phi (a){\rm e}^{{aR_{s} }} ds$$ ,

$$\matrix{ {E[Y_{t} {\rm \mid}{\cal F}_{u} ]} \hfill \hskip-9pt&#x0026; {\equals} &#x0026; \hskip-8pt{{\rm e}^{{aR_{u} }} E_{{R_{u} }} \left[ {{\rm e}^{{a\left( {R_{t} {\minus}R_{u} } \right)}} } \right]{\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\limits_0^u \phi (a){\rm e}^{{aR_{s} }} ds{\minus}E_{{R_{u} }} \left[ {\mathop{\int}\limits_u^t \phi (a){\rm e}^{{aR_{s} }} ds} \right]} \hfill \cr {} \hfill &#x0026; {\equals} \hfill &#x0026; \hskip-8pt{{\rm e}^{{aR_{u} }} {\rm e}^{{\phi (a)(t{\minus}u)}} {\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\limits_0^u \phi (a){\rm e}^{{aR_{s} }} ds{\minus}\mathop{\int}\limits_u^t E_{{R_{u} }} \left[ {\phi (a){\rm e}^{{aR_{s} }} ds} \right]} \hfill \cr {} \hfill &#x0026; {\equals} \hfill &#x0026; \hskip-8pt{{\rm e}^{{aR_{u} }} {\rm e}^{{\phi (a)(t{\minus}u)}} {\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\limits_0^u \phi (a){\rm e}^{{aR_{s} }} ds{\minus}\mathop{\int}\limits_u^t \phi (a){\rm e}^{{aR_{u} }} {\rm e}^{{\phi (a)(s{\minus}u)}} ds} \hfill \cr {} \hfill &#x0026; {\equals} \hfill &#x0026; \hskip-8pt{{\rm e}^{{aR_{u} }} {\rm e}^{{\phi (a)(t{\minus}u)}} {\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\limits_0^u \phi (a){\rm e}^{{aR_{s} }} ds{\minus}\left( {{\rm e}^{{aR_{u} }} {\rm e}^{{\phi (a)(t{\minus}u)}} {\minus}{\rm e}^{{aR_{u} }} } \right)} \hfill \cr {} \hfill &#x0026; {\equals} \hfill &#x0026; \hskip-8pt{{\rm e}^{{aR_{u} }} {\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\limits_0^u \phi (a){\rm e}^{{aR_{s} }} ds\,{\equals}\,Y_{u} } \hfill \cr } $$

where the first equality comes from the fact that {R t R u } is a Lévy process starting at 0 and the second equality comes from the stochastic Fubini theorem. Thus, there exists a Borel-measurable function Le ar =ϕ(a)e ar such that $${\rm e}^{{aR_{t} }} {\minus}{\rm e}^{{ar}} {\minus}\mathop{\int}\nolimits_0^t L{\rm e}^{{aR_{s} }} ds$$ is a martingale. By the definition for the extended infinitesimal generator, the function e ar is inside the domain of L. Hence e ar is an eigenfunction of L and ϕ(a) is its eigenvalue.

3.2. Fluctuation identities

In this section, X t is a spectrally negative Lévy process satisfying the general setting of section 2.1. In the next two propositions, two important identities are stated for ease of reference; see Bertoin (Reference Bayraktar, Kyprianou and Yamazaki1998: 195), Avram et al. (Reference Bertoin2004, theorem 1), Kyprianou (Reference Monique and Shiryaev2006, theorem 8.1) for the proof.

Definition 3.1 The right inverse of Laplace exponent of X is denoted as

$${\rm \Phi }(q){\equals}{\rm sup}\left\{ {a\geq 0\,\colon\,\phi (a){\equals}q} \right\}\;\;\;{\rm for}\;{\rm each}\;\;\;q\geq 0$$

Definition 3.2 (q-scale function) For q≥0, a function W (q)(x) is called a q-scale function of X if W (q)(x)=0 when x<0 and W (q)(x) is a strictly increasing and continuous function in (0, ∞) with Laplace transform satisfying:

$$\mathop{\int}\limits_0^\infty {\rm e}^{{{\minus}\theta x}} W^{{(q)}} (x)dx\,{\equals}\,{1 \over {\phi (\theta ){\minus}q}}\;\;\;{\rm for}\;\;\;\theta \,\gt\,{\rm \Phi }(q)$$

Proposition 3.2 (Two-sided exit identity). Suppose that X t is a spectrally negative Lévy process defined in the above with the initial state X 0=x∈[0, a] and q>0. Consider the stopping times $$\tau _{0}^{{\minus}} {\equals}{\rm inf}\left\{ {t\geq 0{\rm \,\mid\,}X_{t} 0} \right\}$$ and $$\tau _{a}^{{\plus}} {\equals}{\rm inf}\left\{ {t\geq 0{\rm \mid}X_{t}&#x003E; a} \right\}$$ . Then

$$E_{x} \left[ {{\rm e}^{{{\minus}q\tau _{a}^{{\plus}} }} I_{{\left\{ {\tau _{0}^{{\minus}} \,\gt\,\tau _{a}^{{\plus}} } \right\}}} } \right]{\equals}{{W^{{(q)}} (x)} \over {W^{{(q)}} (a)}}$$

For the next proposition and the main theorem thereafter, we need to introduce constant barrier strategy and its related dividend process. Here is a simple definition for constant barrier strategy: a dividend strategy is called constant barrier strategy and denoted by π a if any amount of X above a prefixed cash level a>0 is paid out as the dividends to its shareholders. Its related dividend process is denoted by $$\left\{ {L_{t}^{a} } \right\}_{{t\geq 0}} $$ . Moreover, the dividend process satisfies: $$L_{t}^{a} {\equals}(\overline{X} _{t} {\minus}a)\vee0$$ , where $$\overline{X} _{t} {\equals}{\rm sup}\left\{ {X_{s} {\rm \,\mid\,}0\leq s\leq t} \right\}$$ .

Proposition 3.3.

$$E_{x} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}qt}} dL_{t}^{a} } \right]\,{\equals}\,\left\{ {\matrix{ \hskip-28pt{{{W^{{(q)}} (x)} \over {W^{{(q)\prime}} (a)}},\;\,{\rm if}\;\,x\in[0,a].} \cr {x{\minus}a{\plus}{{W^{{(q)}} (a)} \over {W^{{(q)\prime}} (a)}},\;\,{\rm if}\;\,x\in(a,\infty)} \cr } } \right.$$

4. Main Theorem

In the previous section, we presented an eigenfunction and fluctuation identities for Lévy processes which are restricted by some specific conditions. But in this section, we will show the important role they play in the proof of the main result for this paper. In the following, ϕ r and ϕ x will be the Laplace exponents of R and X, respectively. Before the main theorem and its proof, by assuming that q=−ϕ r (−1), a level c * is introduced below:

$$c_{{\asterisk}} \,{\equals}\,{\rm sup}\left\{ {a\,\gt\,0{\rm \,\mid\,}W^{{(q)\prime}} (a)\leq W^{{(q)\prime}} (x),\;\,{\rm for}\;{\rm all}\;\,x\geq 0} \right\}$$

In the main theorem which is stated below, it is assumed that X is a Lévy process satisfying the setting specified in section 2.1 and R is a Lévy process under the conditions of Proposition 3.1 when a=−1.

Suppose that the underlying capital process is X and the accumulated interest rate process is R. Under the dividend strategy π a , the expected discounted dividend payement will be denoted as: $$v_{{\pi _{a} }} (x,r){\equals}E_{{x,r}} \big[ {\mathop{\int}\nolimits_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}R_{s} }}{\!^\minus}dL_{s}^{a} } \big]$$ , where x, r are the initial states for X and R, respectively. In the previous sections, two extended generators A and L have been defined for processes X and R, respectively. Here we introduce another extended generator G for the bi-variate Markov process (X, R) for which A, L are marginal extended generators, respectively.

Theorem 4.1 (Main theorem). Suppose $$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\in C^{{2,2}} ({\Bbb R}_{{\plus}} ,{\Bbb R})$$ . Then under the conditions that ϕ r (−1)<0 and $$Gv_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\leq 0\;\,for\;\,x\geq c_{{\asterisk}} $$ , we have that c*<∞, the value function $$v_{{\asterisk}} (x,r)\,{\equals}\,v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)$$ and the optimal control is constant barrier strategy at level c *.

Proposition 4.1.

$$v_{{\pi _{a} }} (x,r)\,{\equals}\,E_{{x,r}} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}R_{s} }} dL_{s}^{a} } \right]{\equals}{\rm e}^{{{\minus}r}} v_{a} (x)$$

where $$v_{a} (x){\equals}E_{x} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}qs}} dL_{s}^{a} } \right]$$ for which q=−ϕ r (−1).

Proof:

$$\eqalignno{ v_{{\pi _{a} }} (x,r)\,\,{\equals}\,\, &#x0026; E_{{x,r}} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}R_{s} }} dL_{s}^{a} } \right]\,{\equals}\,E_{x} \left[ {\mathop{\int}_{\rm \Omega } {\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}R_{s} (\omega )}} dL_{s}^{a} {\Bbb P}_{r} (d\omega )} \right] \cr \,{\equals}\, &#x0026; E_{x} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } \mathop{\int}_{\rm \Omega } {\rm e}^{{{\minus}(R_{s} {\minus}r){\minus}r}} {\Bbb P}_{r} (d\omega )dL_{s}^{a} } \right]\,{\equals}\,E_{x} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}r}} {\rm e}^{{\varphi_r} ({\minus}1)s}} dL_{s}^{a} } \right] \cr \,{\equals}\, &#x0026; {\rm e}^{{{\minus}r}} E_{x} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{\phi _{r} ({\minus}1)s}} dL_{s}^{a} } \right] $$

where the third equality holds by stochastic Fubini theorem since the ruin time $$\tau _{0}^{{\minus}} $$ does not depend on R s under constant barrier strategy π a , and the fourth equality holds by Proposition 3.1 and the fact that {R s r} s≥0 is a Lévy process starting at 0.

Let q=−ϕ r (−1). Then

$$v_{{\pi _{a} }} (x,r)\,{\equals}\,{\rm e}^{{{\minus}r}} E_{x} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}qs}} dL_{s}^{a} } \right]\,{\equals}\,{\rm e}^{{{\minus}r}} v_{a} (x)$$

Lemma 4.1. The expected discounted dividend payment under constant barrier strategy π a has the semi-closed form:

$$v_{{\pi _{a} }} (x,r)\,{\equals}\,\left\{ {\matrix{ \hskip-42pt{{\rm e}^{{{\minus}r}} {{W^{{(q)}} (x)} \over {W^{{(q)\prime}} (a)}}\;\,{\rm if}\;\,x\in[0,a]} \cr {{\rm e}^{{{\minus}r}} \left( {x{\minus}a{\plus}{{W^{{(q)}} (a)} \over {W^{{(q)\prime}} (a)}}} \right)\;\:{\rm if}\;\,x\in(a,\infty)} \cr } } \right.$$

Proof of Lemma 4.1: By Proposition 4.1 and Proposition 3.3

$$v_{{\pi _{a} }} (x,r)\,{\equals}\,{\rm e}^{{{\minus}r}} E_{x} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}qs}} dL_{s}^{a} } \right]\,{\equals}\,\left\{ {\matrix{ \hskip-43pt{{\rm e}^{{{\minus}r}} {{W^{{(q)}} (x)} \over {W^{{(q)\prime}} (a)}},\,{\rm if}\;\,x\in[0,a]} \cr {{\rm e}^{{{\minus}r}} \left( {x{\minus}a{\plus}{{W^{{(q)}} (a)} \over {W^{{(q)\prime}} (a)}}} \right),\;\,{\rm if}\;\,x\in(a,\infty)} \cr } } \right.$$

Proposition 4.2. Suppose π a is constant barrier strategy at any level a>0, then

$$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\geq v_{{\pi _{a} }} (x,r)$$

which means that the strategy $$\pi _{{c_{{\asterisk}} }} $$ dominates all the constant barrier strategies.

Proof of Proposition 4.2: We must show that $$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\geq v_{{\pi _{a} }} (x,r)$$ , for two cases a<c* and a>c *. It suffices to show only one of them. Now suppose a<c *.

For $$x\,\lt\,a,v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\,{\equals}\,{\rm e}^{{{\minus}r}} {{W^{{(q)}} (x)} \over {W^{{(q)\prime}} (c_{{\asterisk}} )}}\geq {\rm e}^{{{\minus}r}} {{W^{{(q)}} (x)} \over {W^{{(q)\prime}} (a)}}\,{\equals}\,v_{{\pi _{a} }} (x,r)$$ by the definition of c * and Lemma 4.1.

If axc *, by the definition of c *,W (q)′(a)≥W (q)′(c *). By Lemma 4.1

$$x{\minus}a{\plus}{{W^{{(q)}} (a)} \over {W^{{(q)\prime}} (a)}}\leq x{\minus}a{\plus}{{W^{{(q)}} (a)} \over {W^{{(q)\prime}} (c_{{\asterisk}} )}}\leq {{W^{{(q)}} (x)} \over {W^{{(q)\prime}} (c_{{\asterisk}} )}}$$

where the second inequality comes from the arguments used in proof of Proposition 3 in Avram et al. (Reference De Finetti2007). Therefore, $$v_{{\pi _{a} }} (x,r)\,{\equals}\,{\rm e}^{{{\minus}r}} \left( {x{\minus}a{\plus}{{W^{{(q)}} (a)} \over {W^{{(q)\prime}} (a)}}} \right)\leq {\rm e}^{{{\minus}r}} {{W^{{(q)}} (x)} \over {W^{{(q)\prime}} (c_{{\asterisk}} )}}\,{\equals}\,v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)$$ .

If x>c *, similarly

$$\eqalignno{ v_{{\pi _{a} }} (x,r)\,{\equals}\, &#x0026; v_{{\pi _{a} }} (x,r)\,{\equals}\,{\rm e}^{{{\minus}r}} \left( {x{\minus}a{\plus}{{W^{{(q)}} (a)} \over {W^{{(q)\prime}} (a)}}} \right)\,{\equals}\,{\rm e}^{{{\minus}r}} \left( {x{\minus}c_{{\asterisk}} {\plus}c_{{\asterisk}} {\minus}a{\plus}{{W^{{(q)}} (a)} \over {W^{{(q)\prime}} (a)}}} \right) \cr &#x0026;\leq {\rm e}^{{{\minus}r}} \left( {x{\minus}c_{{\asterisk}} {\plus}c_{{\asterisk}} {\minus}a{\plus}{{W^{{(q)}} (a)} \over {W^{{(q)\prime}} (c_{{\asterisk}} )}}} \right)\leq {\rm e}^{{{\minus}r}} \left( {x{\minus}c_{{\asterisk}} {\plus}{{W^{{(q)}} (c_{{\asterisk}} )} \over {W^{{(q)\prime}} (c_{{\asterisk}} )}}} \right)\,{\equals}\,v_{{\pi _{{c_{{\asterisk}} }} }} (x,r) $$

Through these three cases under a<c *, it shows that $$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\geq v_{{\pi _{a} }} (x,r)$$ . With similar discussions, we can show $$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\geq v_{{\pi _{a} }} (x,r)$$ when a>c * .

Lemma 4.2 (Verification lemma). Let l>0. Suppose w(0, r)=w(0+, r)≥0 and w(x, r)=0, ∀x<0. Suppose $$w(x,r) \in C^{{2,2}} ({\Bbb R}_{{\plus}} ,{\Bbb R})$$ , and for x∈(0, l), it is the solution of the variational inequality

(4.1) $${\rm max}\left\{ {Gw(x,r),{\rm e}^{{{\minus}r}} {\minus}w_{x} (x,r)} \right\}\,{\equals}\,0$$

then $$w(x,r)\geq {\rm sup}_{{\pi _{l} \in{\rm \Pi }_{{\leq l}} }} v_{{\pi _{l} }} (x,r)$$ , where Πl is the collection of all dividend strategies that control the surplus process under level l.

Proof of Lemma 4.2: Suppose that π l ∈Πl and the controlled surplus process is defined by $$U_{t}^{{\pi _{l} }} \,{\equals}\,X_{t} {\minus}L_{t}^{{\pi _{l} }} $$ . Since $$w\in C^{{2,2}} ({\Bbb R}_{{\plus}} ,{\Bbb R})$$ , Itô’s Lemma can be applied to $$w\left( {U_{{t\wedge\tau _{0}^{{\minus}} }}^{{\pi _{l} }} ,\,R_{{t\wedge\tau _{0}^{{\minus}} }} } \right)$$ and

$$\eqalignno{ w\left( {U_{{t\wedge\tau _{0}^{{\minus}} }}^{{\pi _{l} }} ,\,R_{{t\wedge\tau _{0}^{{\minus}} }} } \right){\minus}w(x,r)\,{\equals}\, &#x0026; {\cal M}_{{t\wedge\tau _{0}^{{\minus}} }} {\minus}{\int}_0^{t\wedge\tau _{0}^{{\minus}} } w_{x} \left( {U_{s}^{{\pi _{l} }} ,\,R_{s} } \right)dL_{s}^{{\pi _{l} }} \cr&#x0026;{\plus}{\int}_0^{t\wedge\tau _{0}^{{\minus}} } Gw\left( {U_{s}^{{\pi _{l} }} ,\,R_{s} } \right)ds $$

where $$\tau _{0}^{{\minus}} $$ is the ruin time for $$U_{t}^{{\pi _{l} }} $$ and $${\cal M}$$ is a local martingale with $${\cal M}_{0} \,{\equals}\,0$$ .

Considering that we do not know about the boundedness of the integrals and the local martingale in the above equation, define a sequence of stopping times $$\left\{ {T_{n} ,\,n\in{\Bbb Z}^{{\plus}} } \right\}$$ of which for each n, T n is the first time when absolute value of any of the terms of RHS of the above equation exceeds n. $$\left\{ {T_{n} ,\,n\in{\cal Z}^{{\plus}} } \right\}$$ is a localising sequence for $${\cal M}$$ , and T n →∞ a.s. Then let t=T n , the equation above is changed to

$$\eqalignno{ w\left( {U_{{T_{n} \wedge\tau _{0}^{{\minus}} }}^{{\pi _{l} }} ,\,R_{{T_{n} \wedge\tau _{0}^{{\minus}} }} } \right){\minus}w(x,r)\,{\equals}\, &#x0026; {\cal M} _{{T_{n} \wedge\tau _{0}^{{\minus}} }} {\minus}{\int}_0^{T_{n} \wedge\tau _{0}^{{\minus}} } w_{x} \left( {U_{s}^{{\pi _{l} }} ,\,R_{s} } \right)dL_{s}^{{\pi _{l} }} \cr&#x0026;{\plus}{\int}_0^{T_{n} \wedge\tau _{0}^{{\minus}} } Gw\left( {U_{x}^{{\pi _{l} }} ,\,R_{s} } \right)ds $$

Note that $${\cal M}_{{T_{n} \wedge\tau _{0}^{{\minus}} }} $$ is a local martingale. Taking the expectations on both sides and letting n→∞,

$$\eqalignno{ w\left( {U_{{\tau _{0}^{{\minus}} }}^{{\pi _{l} }} ,\,R_{{\tau _{0}^{{\minus}} }} } \right){\minus}w(x,r)\,{\equals}\, &#x0026; {\cal M}_{{\tau _{0}^{{\minus}} }} {\minus}{\int}_0^{\tau _{0}^{{\minus}} } w_{x} \left( {U_{s}^{{\pi _{l} }} ,\,R_{s} } \right)dL_{s}^{{\pi _{l} }} \cr&#x0026;{\plus}{\int}_0^{\tau _{0}^{{\minus}} } Gw\left( {U_{s}^{{\pi _{l} }} ,\,R_{s} } \right)ds $$

Since $$U_{{\tau _{0}^{{\minus}} }}^{{\pi _{l} }} \leq 0$$ , the first term on LHS will be 0. However, since the strategy π l controls the process $$U_{t}^{{\pi _{l} }} $$ under the level l, in the two integrals on RHS, the function w will satisfy the variational inequality (4.1). Therefore, by the assumption in this lemma, $$Gw\left( {U_{s}^{{\pi _{l} }} ,\,R_{s} } \right)\leq 0$$ and $$w_{x} \left( {U_{s}^{{\pi _{l} }} ,\,R_{s} } \right)\geq {\rm e}^{{{\minus}R_{s} }} $$ for time $$s\in\left[ {0,\,\tau _{0}^{{\minus}} } \right]$$ . Thus after taking the expectations on both sides

$${\minus}w(x,r)\leq {\minus}E_{{x,r}} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}R_{{s^{{\minus}} }} }} dL_{s}^{{\pi _{l} }} } \right]\Rightarrow E_{{x,r}} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}R_{{s^{{\minus}} }} }} dL_{s}^{{\pi _{l} }} } \right]\leq w(x,r)$$

The last inequality is true ∀π l ∈Πl . Hence $${\rm sup}_{{\pi _{l} \in{\rm \Pi }_{{\leq l}} }} E_{{x,r}} \left[ {{\int}_0^{\tau _{0}^{{\minus}} } {\rm e}^{{{\minus}R_{{s^{{\minus}} }} }} dL_{s}^{{\pi _{l} }} } \right]\leq w(x,r)$$ .

In other words, $$w(x,r)\geq {\rm sup}_{{\pi _{l} \in{\rm \Pi }_{{\leq l}} }} v_{{\pi _{l} }} (x,r)$$ .

Next we will see a stopping time T 0,a , which is the first-exit time of an interval [0, a] defined as: T 0,a =inf{t≥0|X t ∉[0, a]} for some constant a>0.

Lemma 4.3. The stochastic process $${\rm e}^{{{\minus}R_{{t^\wedge T_{{0,a}} }} }} W^{{(q)}} \left( {U_{{t\wedge T_{{0,a}} }}^{{\pi _{a} }} } \right)$$ is a martingale in the filtration $$\left\{ {{\cal F}_{t}^{X} \vee{\cal F}_{t}^{R} } \right\}_{{t\geq 0}} $$ , where $${\cal F}_{t}^{X} ,\,{\cal F}_{t}^{R} $$ are generated by X and R, respectively.

Proof of Lemma 4.3: Given that t>s,

$$\eqalignno{ E\left[ {\left. {{\rm e}^{{{\minus}R_{{t{\wedge} T{{0,a}} }} }} W^{{(q)}} \left( {U_{{t\wedge T{{0,a}} }}^{{\pi _{a} }} } \right)} \right|{\cal F}_{s} } \right]\, &#x0026; {\equals}\, I_{{\left\{ {s\,\lt\,T_{{0,a}} } \right\}}} E_{{X_{s} ,R_{s} }} \left[ {{\rm e}^{{{\minus}R_{{t\wedge T_{{0,a}} }} }} W^{{(q)}} \left( {U_{{t\wedge T_{{0,a}} }}^{{\pi _{a} }} } \right)} \right] \cr &#x0026; \;\,\;{\plus}I_{{\left\{ {s\geq T_{{0,a}} } \right\}}} E_{{X_{s} ,R_{s} }} \left[ {{\rm e}^{{{\minus}R_{{T_{{0,a}} }} }} W^{{(q)}} \left( {U_{{T_{{0,a}} }}^{{\pi _{a} }} } \right)} \right] \cr &#x0026; \,{\equals}\,I_{{\left\{ {s\,\lt\,T_{{0,a}} } \right\}}} {\rm e}^{{{\minus}R_{s} }} E_{{X_{s} }} \left[ {{\rm e}^{{{\minus}q(t^\wedge T_{{0,a}} {\minus}s)}} W^{{(q)}} \left( {U_{{t\wedge T_{{0,a}} }}^{{\pi _{a} }} } \right)} \right] \cr &#x0026; \;\,\;{\plus}I_{{\left\{ {s\geq T_{{0,a}} } \right\}}} {\rm e}^{{{\minus}R_{{T_{{0,a}} }} }} W^{{(q)}} \left( {U_{{T_{{0,a}} }}^{{\pi _{a} }} } \right) \cr &#x0026; \,{\equals}\,I_{{\left\{ {s\,\lt\,T_{{0,a}} } \right\}}} {\rm e}^{{{\minus}R_{s} }} E_{{X_{s} }} \left[ {{\rm e}^{{{\minus}q(T_{{0,a}} {\minus}s)}} W^{{(q)}} \left( {U_{{T_{{0,a}} }}^{{\pi _{a} }} } \right)} \right] $$
$$\eqalignno{ &#x0026;\quad{\plus}I_{{\left\{ {s\geq T_{{0,a}} } \right\}}} {\rm e}^{{{\minus}R_{{T_{{0,a}} }} }} W^{{(q)}} \left( {U_{{T_{{0,a}} }}^{{\pi _{a} }} } \right) \cr &#x0026; \,{\equals}\,I_{{\left\{ {s\,\lt\,T_{{0,a}} } \right\}}} {\rm e}^{{{\minus}R_{s} }} E_{{X_{s} }} \left[ {{\rm e}^{{{\minus}q(\tau _{a}^{{\plus}} {\minus}s)}} W^{{(q)}} (a)I_{{\left\{ {\tau _{0}^{{\minus}} \gt\, \tau _{a}^{{\plus}} } \right\}}} } \right] \cr &#x0026; \;\,\;{\plus}I_{{\left\{ {s\geq T_{{0,a}} } \right\}}} {\rm e}^{{{\minus}R_{{T_{{0,a}} }} }} W^{{(q)}} \left( {U_{{T_{{0,a}} }}^{{\pi _{a} }} } \right) \cr &#x0026; \,{\equals}\,I_{{\left\{ {s\,\lt\,T_{{0,a}} } \right\}}} {\rm e}^{{{\minus}R_{s} }} W^{{(q)}} (X_{s} ){\plus}I_{{\left\{ {s\geq T_{{0,a}} } \right\}}} {\rm e}^{{{\minus}R_{{T_{{0,a}} }} }} W^{{(q)}} \left( {U_{{T_{{0,a}} }}^{{\pi _{a} }} } \right) \cr &#x0026; \,{\equals}\,{\rm e}^{{{\minus}R_{{s\wedge T_{{0,a}} }} }} W^{{(q)}} \left( {U_{{s\wedge T_{{0,a}} }}^{{\pi _{a} }} } \right) $$

where the first equality holds since $$\left\{ {s \lt T_{{0,a}} } \right\}\in{\cal F}_{s} $$ . It can be seen that $${\rm e}^{{{\minus}q\left( {t\wedge T_{{0,a}} } \right)}} W^{{(q)}} \left( {U_{{t\wedge T_{{0,a}} }}^{{\pi _{a} }} } \right)$$ is a martingale by Avram et al. (Reference Bertoin2004, proposition 3):

$$\eqalignno{ E_{{X_{s} }} \left[ {\left. {{\rm e}^{{{\minus}q\left( {T_{{0,a}} {\minus}s} \right)}} W^{{(q)}} \left( {U_{{T_{{0,a}} }}^{{\pi _{a} }} } \right)} \right|{\cal F}_{t} } \right]\,{\equals}\, &#x0026; \mathop {lim}\limits_{m\to\infty} E_{{X_{s} }} \left[ {\left. {{\rm e}^{{{\minus}q(m\wedge T_{{0,a}} {\minus}s)}} W^{{(q)}} \left( {U_{{m\wedge T_{{0,a}} }}^{{\pi _{a} }} } \right)} \right|{\cal F}_{t} } \right] \cr \,{\equals}\, &#x0026; E_{{X_{s} }} \left[ {I_{{\left\{ {t\,\gt\,T_{{0,a}} } \right\}}} {\rm e}^{{{\minus}q\left( {T_{{0,a}} {\minus}s} \right)}} W^{{(q)}} \left( {U_{{T_{{0,a}} }}^{{\pi _{a} }} } \right){\plus}I_{{\left\{ {t\leq T_{{0,a}} } \right\}}} {\rm e}^{{{\minus}q(t{\minus}s)}} W^{{(q)}} \left( {U_{t}^{{\pi _{a} }} } \right)} \right] \cr \,{\equals}\, &#x0026; E_{{X_{s} }} \left[ {{\rm e}^{{{\minus}q(t\wedge T_{{0,a}} {\minus}s)}} W^{{(q)}} \left( {U_{{t\wedge T_{{0,a}} }}^{{\pi _{a} }} } \right)} \right] $$

The third equality follows from the above equality. The fourth equation is due to the decomposition of the expectation

$$E_{{X_{s} }} \left[ {{\rm e}^{{{\minus}q\left( {\tau _{a}^{{\plus}} {\minus}s} \right)}} W^{{(q)}} (a)} \right]\,{\equals}\,E_{{X_{s} }} \left[ {{\rm e}^{{{\minus}q\left( {T_{{0,a}} {\minus}s} \right)}} W^{{(q)}} \left( {U_{{T_{{0,a}} }}^{{\pi _{a} }} } \right)I_{{\left\{ {\tau _{0}^{{\minus}} \gt \tau _{a}^{{\plus}} } \right\}}} } \right]{\plus}E_{{X_{s} }} \left[ {{\rm e}^{{{\minus}q\left( {T_{{0,a}} {\minus}s} \right)}} W^{{(q)}} \left( {U_{{T_{{0,a}} }}^{{\pi _{a} }} } \right)I_{{\left\{ {\tau _{0}^{{\minus}} \leq \tau _{a}^{{\plus}} } \right\}}} } \right]$$

and the fact that W (q)(x)=0 for x<0. The fifth equality comes from Proposition 3.2.

Therefore it justifies that $$\left\{ {{\rm e}^{{{\minus}R_{{t\wedge T_{{0,a}} }} }} W^{{(q)}} \left( {U_{{t\wedge T_{{0,a}} }}^{{\pi _{a} }} } \right)} \right\}_{{t\geq 0}} $$ is a martingale.

Lemma 4.4 If c *>0, then $$Gv_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\,{\equals}\,0$$ , for x∈(0,c *).

Proof of Lemma 4.4: By Lemma 4.3, we know that $$\left\{ {{\rm e}^{{{\minus}R_{{t\wedge T_{{0,c_{{\asterisk}} }} }} }} W^{{(q)}} \left( {X_{{t\wedge T_{{0,c_{{\asterisk}} }} }} } \right)} \right\}_{{t\geq 0}} $$ is a martingale, i.e., $$E_{{x,r}} \left[ {{\rm e}^{{{\minus}R_{{t\wedge T_{{0,c_{{\asterisk}} }} }} }} W^{{(q)}} \left( {X_{{t\wedge T_{{0,c_{{\asterisk}} }} }} } \right)} \right]\,{\equals}\,{\rm e}^{{{\minus}r}} W^{{(q)}} (x)$$ . Let $$\tilde{X}\,{\equals}\,\left\{ {X_{{t\wedge T_{{0,c_{{\asterisk}} }} }} } \right\}_{{t\geq 0}} $$ . Then,

$$\eqalignno{ 0\,{\equals}\, &#x0026; \mathop {lim}\limits_{t\to0^{{\plus}} } {{E_{{x,r}} \left[ {{\rm e}^{{{\minus}R_{{t\wedge T_{{0,c_{{\asterisk}} }} }} }} W^{{(q)}} \left( {X_{{t\wedge T_{{0,c_{{\asterisk}} }} }} } \right)} \right]{\minus}{\rm e}^{{{\minus}r}} W^{{(q)}} (x)} \over t} \cr \,{\equals}\, &#x0026; \mathop {lim}\limits_{t\to0^{{\plus}} } {{E_{{x,r}} \left[ {{\rm e}^{{{\minus}R_{t} }} W^{{(q)}} (X_{t} )} \right]{\minus}{\rm e}^{{{\minus}r}} W^{{(q)}} (x)} \over t} \cr \,{\equals}\, &#x0026; \mathop {lim}\limits_{t\to0^{{\plus}} } {{E_{x} \left[ {{\rm e}^{{{\minus}r{\plus}\phi _{r} ({\minus}1)t}} W^{{(q)}} (X_{t} )} \right]{\minus}{\rm e}^{{{\minus}r}} W^{{(q)}} (x)} \over t} $$
$$\eqalignno{ {\equals}\, &#x0026; \mathop {lim}\limits_{t\to0^{{\plus}} } {{{\rm e}^{{{\minus}r}} \left( {{\rm e}^{{\phi _{r} ({\minus}1)t}} E_{x} \left[ {W^{{(q)}} (X_{t} )} \right]{\minus}E_{x} \left[ {W^{{(q)}} (X_{t} )} \right]{\plus}E_{x} \left[ {W^{{(q)}} (X_{t} )} \right]{\minus}W^{{(q)}} (x)} \right)} \over t} \cr \,{\equals}\, &#x0026; {\rm e}^{{{\minus}r}} \left( {\phi _{r} ({\minus}1)W^{{(q)}} (x){\plus}AW^{{(q)}} (x)} \right) $$

On the other hand, by Lemma 4.1,

$$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\,{\equals}\,{\rm e}^{{{\minus}r}} {{W^{{(q)}} (x)} \over {W^{{(q)\prime}} (c_{{\asterisk}} )}}$$

for x∈(0, c *). In the following, denote $$\left\{ {U_{{t\wedge T_{{0,c_{{\asterisk}} }} }}^{{\asterisk}} } \right\}_{{t\geq 0}} $$ and $$\left\{ {R_{{t\wedge T_{{0,c_{{\asterisk}} }} }} } \right\}_{{t\geq 0}} $$ by $$\tilde{U}^{{\asterisk}} $$ and $$\tilde{r}$$ , respectively. Let the initial state for $$U_{t}^{{\asterisk}} $$ be x∈(0,c *). Observe that starting from x∈(0,c *), $$\tilde{X}\,{\equals}\,\tilde{U}^{{\asterisk}} $$ , i.e., $$X_{{t\wedge T_{{0,c_{{\asterisk}} }} }} \,{\equals}\,U_{{t\wedge T_{{0,c_{{\asterisk}} }} }}^{{\asterisk}} $$ , before the stopping time $$T_{{0,c_{{\asterisk}} }} $$ . Suppose that the generator for $$\tilde{U}^{{\asterisk}} $$ is denoted by J. Then $$(J{\plus}L)v_{{c_{{\asterisk}} }} \left( {U_{0}^{{\asterisk}} ,r} \right)\,{\equals}\,Gv_{{c_{{\asterisk}} }} (X_{0} ,r)\,{\equals}\,Gv_{{c_{{\asterisk}} }} (x,r)$$ which implies that the generators for $$v_{{c_{{\asterisk}} }} \left( {\tilde{U}^{{\asterisk}} ,\tilde{r}} \right)$$ and $$v_{{c_{{\asterisk}} }} (\tilde{X},\tilde{r})$$ are the same around x∈(0, c *):

$$\eqalignno{ Gv_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\,{\equals}\, &#x0026; G{\rm e}^{{{\minus}r}} {{W^{{(q)}} (x)} \over {W^{{(q)}} (c_{{\asterisk}} )}} \cr \,{\equals}\, &#x0026; {{{\rm e}^{{{\minus}r}} AW^{{(q)}} (x){\plus}W^{{(q)}} (x)L{\rm e}^{r} } \over {W^{{(q)}} (c_{{\asterisk}} )}} \cr \,{\equals}\, &#x0026; {{{\rm e}^{{{\minus}r}} AW^{{(q)}} (x){\plus}W^{{(q)}} (x){\rm e}^{{{\minus}r}} \phi _{r} ({\minus}1)} \over {W^{{(q)}} (c_{{\asterisk}} )}}\,{\equals}\,0 $$

where the last equality but one comes from Proposition 3.1. The last equality follows simply from the previous result.

Proof of main theorem 4.1: Since it is assumed that q=−ϕ(−1)>0, c *<∞ by Lemma 2 in Avram et al. (Reference De Finetti2007). We need to prove the claim that $$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)$$ is the solution of the variational inequality (4.1) for x∈(0,∞). By Lemma 4.4 above, it shows that $$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)$$ is the solution for x∈(0,c *). However observe that for $$x\in(c_{{\asterisk}} ,\infty),\,v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\,{\equals}\,{\rm e}^{{{\minus}r}} \left( {x{\minus}c_{{\asterisk}} {\plus}{{W^{{(q)}} (c_{{\asterisk}} )} \over {W^{{(q)\prime}} (c_{{\asterisk}} )}}} \right)$$ . Then $${\partial \over {\partial x}}v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\,{\equals}\,{\rm e}^{{{\minus}r}} ,\,\forall \,x\in(c_{{\asterisk}} ,\infty)$$ . In other words $$v_{{\pi _{{c_{{{\asterisk}_{x} }} }} }} (x,r)\,{\equals}\,{\rm e}^{{{\minus}r}} ,\,\forall \,x\in(c_{{\asterisk}} ,\infty)$$ . On the other hand, by the assumption of main Theorem 4.1, $$Gv_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\leq 0\,{\rm for}\,x\in(c_{{\asterisk}} ,\infty)$$ . Thus, the claim that $$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)$$ is the solution of variational inequality (4.1) for x∈(0, ∞) is justified. By Verification Lemma 4.2, $$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\geq {\rm sup}_{{\pi \in\Pi _{{\leq \infty}} }} v_{\pi } (x,r)$$ . By the definition of Π≤∞, it can be seen that the optimal strategy $$\pi _{{\asterisk}} \in{\rm \Pi }_{{\leq \infty}} ,\,{\rm i}.{\rm e}.,\,v_{{\asterisk}} (x,r)\,{\equals}\,{\rm sup}_{{\pi \in\Pi _{{\leq \infty}} }} v_{\pi } (x,r)$$ . So we have $$v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)\geq v_{{\asterisk}} (x,r)$$ . By the definition of value function, $$v_{{\asterisk}} (x,r)\geq v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)$$ . In the end $$v_{{\asterisk}} (x,r)\,{\equals}\,v_{{\pi _{{c_{{\asterisk}} }} }} (x,r)$$ .

5. Conclusion

The proof of the main result relies on the exponential function as an eigenfunction of the extended infinitesimal generator of a class of Lévy processes in Proposition 3.1. The underlying reason why this occurs is the stationarity and independence of increments of a Lévy process. By modifying the proof in Avram et al. (Reference De Finetti2007), the main Theorem 4.1 shows that constant barrier strategy is optimal under the assumption that the surplus process is modelled by a spectrally negative Lévy process and the discounting factor is an exponential Lévy process satisfying some specific conditions. Furthermore, the result of this paper implies an extension of Bayraktar et al. (Reference Eisenberg2013) which considers the optimality of barrier strategy for a spectrally positive Lévy process under a constant interest rate to the case discounted by an exponential Lévy process.

Acknowledgement

The author wishes to thank his major professor Edward C. Waymire for his advice and careful reading of the manuscript both of which are significantly important for the outcome of this paper. The author would also like to thank an anonymous referee for helpful comments that led to much improvement of this paper.

Footnotes

1 This formula is given in Sato (Reference Schmidli1999).

References

Akyildirim, E., Güney, I.E., Rochet, J.-C. & Soner, H.M. (2014). Optimal dividend policy with random interest rates. Journal of Mathematical Economics, 51, 93101.Google Scholar
Asmussen, S. & Taksar, M. (1997). Controlled diffusion models for optimal dividend pay-out. Insurance: Mathematics and Economics, 20(1), 115.Google Scholar
Avanzi, B. (2009). Strategies for dividend distribution: a review. North American Actuarial Journal, 13(2), 217251.Google Scholar
Avram, F., Kyprianou, A.E. & Pistorius, M.R. (2004). Exit problems for spectrally negative lévy processes and applications to (Canadized) Russian options. The Annals of Applied Probability, 14(1), 215238.Google Scholar
Avram, F., Palmowski, Z. & Pistorius, M.R. (2007). On the optimal dividend problem for a spectrally negative lévy process. The Annals of Applied Probability, 17(1), 156180.Google Scholar
Bayraktar, E., Kyprianou, A.E. & Yamazaki, K. (2013). On optimal dividends in the dual model. Astin Bulletin, 43(3), 359372.Google Scholar
Bertoin, J. (1998). Lévy Processes, volume 121, Cambridge University Press, Cambridge.Google Scholar
De Finetti, B. (1957). Su unimpostazione alternativa della teoria collettiva del rischio. Transactions of the xvth International Congress of Actuaries, 2(1), 433443.Google Scholar
Eisenberg, J. (2015). Optimal dividends under a stochastic interest rate. Insurance: Mathematics and Economics, 65, 259266.Google Scholar
Eisenberg, J. & Krhner, P. (2017). A note on the optimal dividends paid in a foreign currency. Annals of Actuarial Science, 11(1), 6773.Google Scholar
Gerber, H.U. & Shiu, E.S.W. (2006). On optimal dividend strategies in the compound Poisson model. North American Actuarial Journal, 10(2), 7693.Google Scholar
Hipp, C. (2004). Stochastic control with application in insurance. In Stochastic Methods in Finance (pp. 127–164). Springer, Berlin Heidelberg.Google Scholar
Jiang, Z. & Pistorius, M.R. (2012). Optimal dividend distribution under Markov regime switching. Finance and Stochastics, 16(3), 449476.Google Scholar
Kyprianou, A. (2006). Introductory Lectures on Fluctuations of Lévy Processes With Applications. Springer Science & Business Media, Berlin Heidelberg.Google Scholar
Loeffen, R.L. (2008). On optimality of the barrier strategy in de Finettis dividend problem for spectrally negative lévy processes. The Annals of Applied Probability, 18(5), 16691680.Google Scholar
Monique, J.-P. & Shiryaev, A.N. (1995). Optimization of the flow of dividends. Russian Mathematical Surveys, 50(2), 257277.Google Scholar
Protter, P.E. (2005). Stochastic Integration and Differential Equations, Stochastic Modelling and Applied Probability. Springer, Berlin Heidelberg.Google Scholar
Revuz, D. & Yor, M. (2013). Continuous Martingales and Brownian Motion, volume 293, Springer Science & Business Media, Berlin Heidelberg GmbH, Berlin.Google Scholar
Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.Google Scholar
Schmidli, H. (2007). Stochastic Control in Insurance. Springer Science & Business Media, London.Google Scholar